Bisphosphonates, used for a long time in osteoporosis management, are currently the target of intensive research, from pre-formulation studies to more advanced stages of clinical practice. This review presents an overview of the contributions of this family of compounds to human health, starting with the chemistry and clinical uses of bisphosphonates. Following this, their pharmacology is described, highlighting administration-borne handicaps and undesirable effects. The last three sections of the review describe the research efforts that seek to curb delivery-related issues and expand bisphosphonate use. Innovative routes and strategies of administration, such as nano-encapsulation for oral intake or injectable cements for local or in-bone delivery are presented, as well as the latest results of case studies or preclinical studies proposing new therapeutic indications for the clinically approved bisphosphonates. Finally, a selection of anti-infectious bisphosphonate new drug candidates is shown, with focus on the molecules reported in the last two decades.
Montelukast sodium is a leukotriene antagonist of growing interest as an alternative therapy for asthma across different age groups due to its bronchoprotective, anti-inflammatory and anti-allergic properties. Currently, montelukast is commercialized only in oral solid dosage forms, which are the favorite of adult patients but may pose challenges in administration to children of young age or patients suffering from dysphagia. This review presents a comprehensive revision of scientific reports and patents on emerging strategies for the delivery of montelukast. A common ground to these reports is the pursue of an enhanced montelukast performance, by increasing its bioavailability and physico-chemical stability. A wide variety of strategies can be found, from the formation of supramolecular adducts with cyclodextrins to encapsulation in nanoparticles and liposomes. The new dosage forms for montelukast are designed for non-enteric absorption, some for absorption in the oral cavity and another two being for local action in the nasal mucosa or in the pulmonary epithelium. The review describes the emerging delivery strategies to circumvent the current limitations to the use of montelukast that are expected to ultimately lead to the development of more patient-compliant dosage forms.
The present review describes the various roles of cyclodextrins (CDs) in vaccines against viruses and in antiviral therapeutics. The first section describes the most commonly studied application of cyclodextrins—solubilisation and stabilisation of antiviral drugs; some examples also refer to their beneficial taste-masking activity. The second part of the review describes the role of cyclodextrins in antiviral vaccine development and stabilisation, where they are employed as adjuvants and cryopreserving agents. In addition, cyclodextrin-based polymers as delivery systems for mRNA are currently under development. Lastly, the use of cyclodextrins as pharmaceutical active ingredients for the treatment of viral infections is explored. This new field of application is still taking its first steps. Nevertheless, promising results from the use of cyclodextrins as agents to treat other pathologies are encouraging. We present potential applications of the results reported in the literature and highlight the products that are already available on the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.