G protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new 3D molecular structures of GPCRs (3D-GPCRome) during the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique to explore the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyse and share GPCR MD data.GPCRmd originates from a community-driven effort to create the first open, interactive, and standardized database of GPCR MD simulations.However, static high-resolution structures provide little information on the intrinsic 71 flexibility of GPCRs, a key aspect to fully understand their function. Important advances 72
The extended classic ternary complex model predicts that a G protein-coupled receptor (GPCR) exists in only two interconvertible states: an inactive R, and an active R*. However, different structural active R* complexes may exist in addition to a silent inactive R ground state (Rg). Here we demonstrate, in a cellular context, that several R* states of 5-hydroxytryptamine-4 (5-HT 4 ) receptors involve different side-chain conformational toggle switches. Using site-directed mutagenesis and molecular modeling approaches, we show that the basal constitutive receptor (R*basal) results from stabilization of an obligatory double toggle switch (Thr3.36 from inactive gϪ to active gϩ and Trp6.48 from inactive gϩ to active t
GPCR-ModSim (http://open.gpcr-modsim.org) is a centralized and easy to use service dedicated to the structural modeling of G-protein Coupled Receptors (GPCRs). 3D molecular models can be generated from amino acid sequence by homology-modeling techniques, considering different receptor conformations. GPCR-ModSim includes a membrane insertion and molecular dynamics (MD) equilibration protocol, which can be used to refine the generated model or any GPCR structure uploaded to the server, including if desired non-protein elements such as orthosteric or allosteric ligands, structural waters or ions. We herein revise the main characteristics of GPCR-ModSim and present new functionalities. The templates used for homology modeling have been updated considering the latest structural data, with separate profile structural alignments built for inactive, partially-active and active groups of templates. We have also added the possibility to perform multiple-template homology modeling in a unique and flexible way. Finally, our new MD protocol considers a series of distance restraints derived from a recently identified conserved network of helical contacts, allowing for a smoother refinement of the generated models which is particularly advised when there is low homology to the available templates. GPCR- ModSim has been tested on the GPCR Dock 2013 competition with satisfactory results.
We report the synthesis of a new set of compounds of general structure I (1-20) with structural modifications in the pharmacophoric elements of the previously reported lead UCM-5600. The new derivatives have been evaluated for binding affinity at 5-HT(7) and 5-HT(1A) receptors. The influence of the different structural features in terms of 5-HT(7)/5-HT(1A) receptor affinity and selectivity was analyzed by computational simulations of the complexes between compounds I and beta(2)-based 3-D models of these receptors. Compound 18 (HYD(1) = 1,3-dihydro-2H-indol-2-one; spacer = -(CH(2))(4)-; HYD(2) + HYD(3) = 3,4-dihydroisoquinolin-2(1H)-yl) exhibits high 5-HT(7)R affinity (K(i) = 7 nM) and selectivity over the 5-HT(1A)R (31-fold), and has been characterized as a partial agonist of the human 5-HT(7)R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.