MECP2 duplication syndrome, originally described in 2005, is an X-linked neurodevelopmental disorder comprising infantile hypotonia, severe to profound intellectual disability, autism or autistic-like features, spasticity, along with a variety of additional features that are not always clinically apparent. The syndrome is due to a duplication (or triplication) of the gene methyl CpG binding protein 2 (MECP2). To date, the disorder has been described almost exclusively in males. Female carriers of the duplication are thought to have no or mild phenotypic features. Recently, a phenotype for females began emerging. We describe a family with ∼290 kb duplication of Xq28 region that includes the MECP2 gene where the proposita and affected family members are female. Twin sisters, presumed identical, presented early with developmental delay, and seizures. Evaluation of the proposita at 25 years of age included microarray comparative genomic hybridization (aCGH) which revealed the MECP2 gene duplication. The same duplication was found in the proposita's sister, who is more severely affected, and the proband's mother who has mild intellectual disability and depression. X-chromosome inactivation studies showed significant skewing in the mother, but was uninformative in the twin sisters. We propose that the MECP2 duplication caused for the phenotype of the proband and her sister. These findings support evidence for varied severity in some females with MECP2 duplications.
Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A-and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Ca subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(d) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.
Propionic acidemia (PA) occurs at a higher incidence within the Amish; however, sensitivity of newborn screening and its impact on long-term clinical outcomes has not been reported in this population. This study reviewed screening data and health records of 20 Wisconsin Amish patients diagnosed with PA. Newborn screening did not identify all cases; however, early detection did offer appreciable long-term protection from neurological sequelae. This is the first report summarizing PA cases within the Amish.
Ethylmalonic encephalopathy (EE) is a rapidly progressive autosomal recessive mitochondrial disease caused by biallelic pathogenic variants in the ETHE1 gene that encodes the mitochondrial sulfur dioxygenase. It is characterized by neurodevelopmental delay and regression, pyramidal and extrapyramidal signs, recurrent petechiae, chronic diarrhea, and orthostatic acrocyanosis. Laboratory findings include elevated serum levels of lactate and C4-C5 acylcarnitines, and elevated urinary excretion of ethylmalonic acid and C4-C6 acylglycines, notably isobutyrylglycine and 2-methylbutyrylglycine. These findings are attributed to deficiency of the mitochondrial sulfur dioxygenase resulting in toxic accumulation of hydrogen sulfide metabolites in vascular endothelium and mucosal cells of the large intestine. Medical management has thus far been directed toward decreasing the accumulation of hydrogen sulfide metabolites using a combination of metronidazole and N-acetylcysteine. More recently, orthotopic liver transplant (OLT) has been reported as a new therapeutic option for EE. Here, we report two additional cases of EE who achieved psychomotor developmental improvement after 7-and 22-months following OLT. The second case serves as the longest developmental outcome follow-up reported, thus far, following OLT for EE. This report provides additional evidence to validate OLT as a promising therapeutic approach for what was considered to be a fatal disease. K E Y W O R D S ETHE1, ethylmalonic encephalopathy, hydrogen sulfide toxicity, mitochondrial sulfur dioxygenase, orthotopic liver transplant
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.