Background The possibility that mu opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings based on mu opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models. Methods We utilized human lung tissue and human non-small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnalnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using Visen FMT imaging and immunohistochemical analysis. Results We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ~5 to 10 fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and DAMGO increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50–80%. Injection of MOR silenced LLC lead to a ~65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC as compared to wildtype controls. Finally, continuous infusion of the peripheral opioid antagonist methylnaltrexone attenuates primary LLC tumor growth and reduces lung metastasis. Conclusions Taken together, our data suggests a possible direct effect of opiates on lung cancer progression, and provides a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.
BackgroundExposure to particulate matter (PM) is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation.ObjectivesWe explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC) barrier integrity and enhanced cardiopulmonary dysfunction.MethodsChanges in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER) in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm). Biochemical assessment of ROS generation and Ca2+ mobilization were also measured.ResultsPM exposure induced tight junction protein Zona occludens-1 (ZO-1) relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin). N-acetyl-cysteine (NAC, 5 mM) reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2), in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro.ConclusionsThese results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.
Clinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components serve as modulators and novel therapeutic targets of RILI. Sphingolipid involvement in murine RILI was confirmed by radiation-induced increases in lung expression of sphingosine kinase (SphK) isoforms 1 and 2 and increases in the ratio of ceramide to sphingosine 1-phosphate (S1P) and dihydro-S1P (DHS1P) levels in plasma, bronchoalveolar lavage fluid, and lung tissue. Mice with a targeted deletion of SphK1 (SphK1(-/-)) or with reduced expression of S1P receptors (S1PR1(+/-), S1PR2(-/-), and S1PR3(-/-)) exhibited marked RILI susceptibility. Finally, studies of 3 potent vascular barrier-protective S1P analogs, FTY720, (S)-FTY720-phosphonate (fTyS), and SEW-2871, identified significant RILI attenuation and radiation-induced gene dysregulation by the phosphonate analog, fTyS (0.1 and 1 mg/kg i.p., 2×/wk) and to a lesser degree by SEW-2871 (1 mg/kg i.p., 2×/wk), compared with those in controls. These results support the targeting of S1P signaling as a novel therapeutic strategy in RILI.
The role of thyroid hormone metabolism in clinical outcomes of the critically ill remains unclear. Using preclinical models of acute lung injury (ALI), we assessed the gene and protein expression of type 2 deiodinase (DIO2), a key driver for synthesis of biologically active triiodothyronine, and addressed potential association of DIO2 genetic variants with ALI in a multiethnic cohort. DIO2 gene and protein expression levels in murine lung were validated by microarrays and immunoblotting. Lung injury was assessed by levels of bronchoalveolar lavage protein and leukocytes. Single-nucleotide polymorphisms were genotyped and ALI susceptibility association assessed. Significant increases in both DIO2 gene and D2 protein expression were observed in lung tissues from murine ALI models (LPS-and ventilator-induced lung injury), with expression directly increasing with the extent of lung injury. Mice with reduced levels of DIO2 expression (by silencing RNA) demonstrated reduced thyroxine levels in plasma and increased lung injury (increased bronchoalveolar lavage protein and leukocytes), suggesting a protective role for DIO2 in ALI. The G (Ala) allele of the Thr92Ala coding single-nucleotide polymorphism (rs225014) was protective in severe sepsis and severe sepsis-associated ALI after adjustments for age, sex, and genetic ancestry in a logistic regression model in European Americans. Our studies indicate that DIO2 is a novel ALI candidate gene, the nonsynonymous Thr92Ala coding variant of which confers ALI protection. Increased DIO2 expression may dampen the ALI inflammatory response, thereby strengthening the premise that thyroid hormone metabolism is intimately linked to the integrated response to inflammatory injury in critically ill patients.Keywords: acute respiratory distress syndrome; hypothyroidism; mechanical ventilation; sepsis Acute lung injury (ALI) is one of the major causes of acute respiratory failure that usually develops in response to major insults, such as sepsis, trauma, pneumonia, and multiple transfusions (1). Although mechanical ventilation (MV) is indispensable for the survival of patients with ALI (2), clinical trials have shown that improperly delivered MV causes or worsens lung injury, a syndrome known as ventilator-induced lung injury (VILI). ALI and VILI are characterized by augmented capillary leakage, acute inflammation, and increases in inflammatory cytokine expression (3, 4). Microarray analyses have identified a number of ALI-associated candidate genes correlated with the outcome of both ALI and VILI (5-8). Case-control association studies further support that genetic variants in these genes contribute to susceptibility and survival of sepsis and ALI (8-12). Despite these increasing insights into ALI/VILI pathobiology, ALI continues to carry an unacceptably high mortality (.30%), and the basis for the increased ALI morbidity/mortality remains poorly understood.Clinicians have had a long-standing interest in the enigmatic role of thyroid hormones (THs) in critically ill patients (13) who e...
Microvascular injury and increased vascular leakage are prominent features of radiation-induced lung injury (RILI), and often follow cancer-associated thoracic irradiation. Our previous studies demonstrated that polymorphisms in the gene (MIF) encoding macrophage migratory inhibition factor (MIF), a multifunctional pleiotropic cytokine, confer susceptibility to acute inflammatory lung injury and increased vascular permeability, particularly in senescent mice. In this study, we exposed wild-type and genetically engineered mif 2/2 mice to 20 Gy single-fraction thoracic radiation to investigate the agerelated role of MIF in murine RILI (mice were aged 8 wk, 8 mo, or 16 mo). Relative to 8-week-old mice, decreased MIF was observed in bronchoalveolar lavage fluid and lung tissue of 8-to 16-month-old wild-type mice. In addition, radiated 8-to 16-month-old mif 2/2 mice exhibited significantly decreased bronchoalveolar lavage fluid total antioxidant concentrations with progressive age-related decreases in the nuclear expression of NF-E2-related factor-2 (Nrf2), a transcription factor involved in antioxidant gene up-regulation in response to reactive oxygen species. This was accompanied by decreases in both protein concentrations (NQO1, GCLC, and heme oxygenase-1) and mRNA concentrations (Gpx1, Prdx1, and Txn1) of Nrf2-influenced antioxidant gene targets. In addition, MIF-silenced (short, interfering RNA) human lung endothelial cells failed to express Nrf2 after oxidative (H 2 O 2 ) challenge, an effect reversed by recombinant MIF administration. However, treatment with an antioxidant (glutathione reduced ester), but not an Nrf2 substrate (N-acetyl cysteine), protected aged mif 2/2 mice from RILI. These findings implicate an important role for MIF in radiation-induced changes in lung-cell antioxidant concentrations via Nrf2, and suggest that MIF may contribute to age-related susceptibility to thoracic radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.