Obesity is strongly associated with ill health, primarily caused by consumption of excessive calories, and promoted (inter alia) by gamma-amino-butyric-acid (GABA) stimulating food intake by activating GABA receptors (primarily with α3 and α2 subunits) in the hypothalamic arcuate nucleus and paraventricular nucleus. Allopregnanolone is a potent positive GABA receptor modulating steroid (GAMS). As reviewed here, elevated allopregnanolone levels are associated with increases in food intake, preferences for energy-rich food, and obesity in humans and other mammals. In women with polycystic ovarian disease, high serum allopregnanolone concentrations are linked to uncontrolled eating, and perturbed sensitivity to allopregnanolone. Increases in weight during pregnancy also correlate with increases in allopregnanolone levels. Moreover, Prader-Willis syndrome is associated with massive overeating, absence of a GABA receptor (with compensatory >12-, >5- and >1.5-fold increases in α4, γ2, and α1, α3 subunits), and increases in the α4, βx, δ receptor subtype, which is highly sensitive to allopregnanolone. GABA and positive GABA-A receptor modulating steroids like allopregnanolone stimulates food intake and weight gain.
Among female rats, some individuals show estrus cycle-dependent irritability/aggressive behaviors, and these individual rats may be used as a model for premenstrual dysphoric disorder (PMDD). We wanted to investigate if these behaviors are related to the estrus cycle phase containing moderately increased levels of positive GABA-A receptor-modulating steroids (steroid-PAM), especially allopregnanolone (ALLO), and if the adverse behavior can be antagonized. The electrophysiology studies in this paper show that isoallopregnanolone (ISO) is a GABA-A-modulating steroid antagonist (GAMSA), meaning that ISO can antagonize the agonistic effects of positive GABA-A receptor-modulating steroids in both α1β2γ2L and α4β3δ GABA-A receptor subtypes. In this study, we also investigated whether ISO could antagonize the estrus cycle-dependent aggressive behaviors in female Wistar rats using a resident–intruder test. Our results confirmed previous reports of estrus cycle-dependent behaviors in that 42% of the tested rats showed higher levels of irritability/aggression at diestrus compared to those at estrus. Furthermore, we found that, during the treatment with ISO, the aggressive behavior at diestrus was alleviated to a level comparable to that of estrus. We noticed an 89% reduction in the increase in aggressive behavior at diestrus compared to that at estrus. Vehicle treatment in the same animals showed a minimal effect on the diestrus-related aggressive behavior. In conclusion, we showed that ISO can antagonize Steroid-PAM both in α1β2γ2L and α4β3δ GABA-A receptor subtypes and inhibit estrus cycle-dependent aggressive behavior.
Sound environmental management decisions - in accordance with the EU WFD for aquatic ecosystems – mainly depend on reliable species presence- and distribution- data. Here we present a workflow from sampling strategies to results and decision making using eDNA metabarcoding analyses for fish, amphibians, and mussels from habitat to landscape scales with focus on sampling strategies for "big data" in marine and freshwater ecosystems in Sweden. The project LifeDNAquatic highlights a solid eDNA pipeline and comparison of methods, which cover field planning and the entire pipeline generating data for Species Distribution Models (SDMs). Intense sampling over a large river catchment highlights previoulsy unanswered questionsand and provides insights to a priori settings for sampling strategies to retrieve "big data". The results provide novel insights to DNA distribution in the environment, seasonal and spatial changes in eDNA composition, and validation of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.