While projection-based reduced order models can reduce the dimension of full order solutions, the resulting reduced models may still contain terms that scale with the full order dimension. Hyper-reduction techniques are sampling-based methods that further reduce this computational complexity by approximating such terms with a much smaller dimension. The goal of this work is to introduce a points selection algorithm developed by Shin and Xiu [SIAM J. Sci. Comput., 38 (2016), pp. A385-A411], as a hyper-reduction method. The selection algorithm is originally proposed as a stochastic collocation method for uncertainty quantification. Since the algorithm aims at maximizing a quantity S that measures both the column orthogonality and the determinant, we refer to the algorithm as S-OPT. Numerical examples are provided to demonstrate the performance of S-OPT and to compare its performance with an over-sampled Discrete Empirical Interpolation (DEIM) algorithm. We found that using the S-OPT algorithm is shown to predict the full order solutions with higher accuracy for a given number of indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.