Chronic kidney disease (CKD) remains a major epidemiological, clinical and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) suffer a persistent inflammatory and profibrotic response. Fatty acid oxidation (FAO), the main source of energy for TECs, is reduced in kidney fibrosis and contributes to its pathogenesis. To determine if FAO gain-offunction (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyltransferase 1 A (CPT1A) in TECs. Cpt1a knock-in (CPT1A KI) mice subjected to three different models of renal fibrosis (unilateral ureteral obstruction, folic acid nephropathy-FAN and adenine induced nephrotoxicity) exhibited decreased expression of fibrotic markers, a blunted pro-inflammatory response and reduced epithelial cell damage and macrophage influx. Protection from fibrosis was also observed when Cpt1a overexpression was induced after FAN. FAO-GOF restituted oxidative metabolism and mitochondrial number and enhanced bioenergetics increasing palmitate oxidation and ATP levels, changes also recapitulated in TECs exposed to profibrotic stimuli. Studies in patients evidenced decreased CPT1 levels and increased accumulation of short and middle chain acylcarnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD.
MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and controlbiological processes (BPs), including fibrogenesis. Kidney fibrosis remains a clinical challenge and miRNAs may represent a valid therapeutic avenue. We show that miR-9-5p protected from renal fibrosis in the mouse model of unilateral ureteral obstruction (UUO). This was reflected in reduced expression of pro-fibrotic markers, decreased number of infiltrating monocytes/macrophages, and diminished tubular epithelial cell injury and transforming growth factor-beta 1 (TGF-β1)-dependent dedifferentiation in human kidney proximal tubular (HKC-8) cells. RNA-sequencing (RNA-Seq) studies in the UUO model revealed that treatment with miR-9-5p prevented the downregulation of genes related to key metabolic pathways, including mitochondrial function, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and glycolysis. Studies in human tubular epithelial cells demonstrated that miR-9-5p impeded TGF-β1-induced bioenergetics derangement. The expression of the FAO-related axis peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-peroxisome proliferator-activated receptor alpha (PPARα) was reduced by UUO, although preserved by the administration of miR-9-5p. We found that in mice null for the mitochondrial master regulator PGC-1α, miR-9-5p was unable to promote a protective effect in the UUO model. We propose that miR-9-5p elicits a protective response to chronic kidney injury and renal fibrosis by inducing | 411 FIERRO-FERNÁNDEZ Et al.
Chronic kidney disease (CKD) remains a major epidemiological, clinical and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) suffer a persistent inflammatory and profibrotic response. Defective fatty acid oxidation (FAO), the main source of energy for TECs, contributes to kidney fibrosis. To determine if FAO gain-of-function (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyl-transferase 1 A (CPT1A) in TECs. Cpt1a knockin mice subjected to three different models of renal fibrosis exhibited decreased expression of fibrotic markers, a blunted pro-inflammatory response and reduced epithelial cell damage.Mitochondrial number, oxygen consumption and ATP levels were restored after FAO-GOF.Studies in patients evidenced decreased CPT1 levels and increased accumulation of short and middle chain acylcarnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD. MINECO. We are grateful to the laboratories of Jorgina Satrustegui and José ManuelCuezva for sharing the Seahorse equipment and Laura Santos for her help with histology procedures, from the laboratory of Marta Ruiz-Ortega at the Fundación Jiménez Díaz. We also thank the help of the following facilities of the CBMSO: animal housing, flow cytometry and confocal microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.