Background. Molecular profiling is revolutionizing cancer diagnostics and leading to personalized therapeutic approaches. Herein we describe our clinical experience performing targeted sequencing for 31 pediatric neurooncology patients. Methods. We sequenced 510 cancer-associated genes from tumor and peripheral blood to identify germline and somatic mutations, structural variants, and copy number changes. Results. Genomic profiling was performed on 31 patients with tumors including 11 high-grade gliomas, 8 medulloblastomas, 6 low-grade gliomas, 1 embryonal tumor with multilayered rosettes, 1 pineoblastoma, 1 uveal ganglioneuroma, 1 choroid plexus carcinoma, 1 chordoma, and 1 high-grade neuroepithelial tumor. In 25 cases (81%), results impacted patient management by: (i) clarifying diagnosis, (ii) identifying pathogenic germline mutations, or (iii) detecting potentially targetable alterations. The pathologic diagnosis was amended after genomic profiling for 6 patients (19%), including a high-grade glioma to pilocytic astrocytoma, medulloblastoma to pineoblastoma, ependymoma to high-grade glioma, and medulloblastoma to CNS high-grade neuroepithelial tumor with BCOR alteration. Multiple patients had pathogenic germline mutations, many of which were previously unsuspected. Potentially targetable alterations were identified in 19 patients (61%). Additionally, novel likely pathogenic alterations were identified in 3 cases: an in-frame RAF1 fusion in a BRAF wild-type pleomorphic xanthoastrocytoma, an inactivating ASXL1 mutation in a histone H3
BACKGROUNDThe cause of most fetal anomalies is not determined prenatally. Exome sequencing has transformed genetic diagnosis after birth, but its usefulness for prenatal diagnosis is still emerging. Nonimmune hydrops fetalis (NIHF), a fetal abnormality that is often lethal, has numerous genetic causes; the extent to which exome sequencing can aid in its diagnosis is unclear. METHODSWe evaluated a series of 127 consecutive unexplained cases of NIHF that were defined by the presence of fetal ascites, pleural or pericardial effusions, skin edema, cystic hygroma, increased nuchal translucency, or a combination of these conditions. The primary outcome was the diagnostic yield of exome sequencing for detecting genetic variants that were classified as either pathogenic or likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics. Secondary outcomes were the percentage of cases associated with specific genetic disorders and the proportion of variants that were inherited. RESULTSIn 37 of the 127 cases (29%), we identified diagnostic genetic variants, including those for disorders affecting the RAS-MAPK cell-signaling pathway (known as RASopathies) (30% of the genetic diagnoses); inborn errors of metabolism and musculoskeletal disorders (11% each); lymphatic, neurodevelopmental, cardiovascular, and hematologic disorders (8% each); and others. Prognoses ranged from a relatively mild outcome to death during the perinatal period. Overall, 68% of the cases (25 of 37) with diagnostic variants were autosomal dominant (of which 12% were inherited and 88% were de novo), 27% (10 of 37) were autosomal recessive (of which 95% were inherited and 5% were de novo), 1 was inherited X-linked recessive, and 1 was of uncertain inheritance. We identified potentially diagnostic variants in an additional 12 cases. CONCLUSIONSIn this large case series of 127 fetuses with unexplained NIHF, we identified a diagnostic genetic variant in approximately one third of the cases.
CD18 integrins promote neutrophil recruitment, and their engagement activates tyrosine kinases, leading to neutrophil activation. However, the significance of integrin-dependent leukocyte activation in vivo has been difficult to prove. Here, in a model of thrombohemorrhagic vasculitis, the CD18 integrin Mac-1 on neutrophils recognized complement C3 deposited within vessel walls and triggered a signaling pathway involving the Src-family kinase Hck and the Syk tyrosine kinase. This led to neutrophil elastase release, causing hemorrhage, fibrin deposition, and thrombosis. Mice genetically deficient in any of these components (C3, Mac-1, Hck, Syk, or elastase) were resistant to disease despite normal tissue neutrophil accumulation. Disease was restored in Mac-1-deficient mice infused with wild-type, but not kinase- or elastase-deficient, neutrophils. Elastase release in the inflamed tissue was reduced in Mac-1-deficient mice, and a deficiency of Mac-1 or the kinases blocked neutrophil elastase release in vitro. These data suggest that Mac-1 engagement of complement activates tyrosine kinases to promote elastase-dependent blood vessel injury in vivo.
Ganglioglioma is the most common epilepsy-associated neoplasm that accounts for approximately 2% of all primary brain tumors. While a subset of gangliogliomas are known to harbor the activating p.V600E mutation in the BRAF oncogene, the genetic alterations responsible for the remainder are largely unknown, as is the spectrum of any additional cooperating gene mutations or copy number alterations. We performed targeted next-generation sequencing that provides comprehensive assessment of mutations, gene fusions, and copy number alterations on a cohort of 40 gangliogliomas. Thirty-six harbored mutations predicted to activate the MAP kinase signaling pathway, including 18 with BRAF p.V600E mutation, 5 with variant BRAF mutation (including 4 cases with novel in-frame insertions at p.R506 in the β3-αC loop of the kinase domain), 4 with BRAF fusion, 2 with KRAS mutation, 1 with RAF1 fusion, 1 with biallelic NF1 mutation, and 5 with FGFR1/2 alterations. Three gangliogliomas with BRAF p.V600E mutation had concurrent CDKN2A homozygous deletion and one additionally harbored a subclonal mutation in PTEN. Otherwise, no additional pathogenic mutations, fusions, amplifications, or deletions were identified in any of the other tumors. Amongst the 4 gangliogliomas without canonical MAP kinase pathway alterations identified, one epilepsy-associated tumor in the temporal lobe of a young child was found to harbor a novel ABL2-GAB2 gene fusion. The underlying genetic alterations did not show significant association with patient age or disease progression/recurrence in this cohort. Together, this study highlights that ganglioglioma is characterized by genetic alterations that activate the MAP kinase pathway, with only a small subset of cases that harbor additional pathogenic alterations such as CDKN2A deletion.Electronic supplementary materialThe online version of this article (10.1186/s40478-018-0551-z) contains supplementary material, which is available to authorized users.
High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication (HGNET BCOR ex15 ITD) is a recently proposed tumor entity of the central nervous system (CNS) with a distinct methylation profile and characteristic genetic alteration. The complete spectrum of histologic features, accompanying genetic alterations, clinical outcomes, and optimal treatment for this new tumor entity are largely unknown. Here, we performed a comprehensive assessment of 10 new cases of HGNET BCOR ex15 ITD. The tumors mostly occurred in young children and were located in the cerebral or cerebellar hemispheres. On imaging all tumors were large, well-circumscribed, heterogeneous masses with variable enhancement and reduced diffusion. They were histologically characterized by predominantly solid growth, glioma-like fibrillarity, perivascular pseudorosettes, and palisading necrosis, but absence of microvascular proliferation. They demonstrated sparse to absent GFAP expression, no synaptophysin expression, variable OLIG2 and NeuN positivity, and diffuse strong BCOR nuclear positivity. While BCOR exon 15 internal tandem duplication was the solitary pathogenic alteration identified in six cases, four cases contained additional alterations including CDKN2A/B homozygous deletion, TERT amplification or promoter hotspot mutation, and damaging mutations in TP53, BCORL1, EP300, SMARCA2 and STAG2. While the limited clinical followup in prior reports had indicated a uniformly dismal prognosis for this tumor entity, this cohort includes multiple long-term survivors. Our study further supports inclusion of HGNET BCOR ex15 ITD as a distinct CNS tumor entity and expands the known clinicopathologic, radiographic, and genetic features.Brain Pathology 30 (2020) 46-62
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.