Endothelial dysfunction precedes atherosclerosis and may constitute a critical link between obesity-related inflammation and cardiovascular disease. Neutrophil extracellular traps (NETs) have been shown to promote vascular damage in murine models of autoimmune disease and atherosclerosis. The impact of NETs towards endothelial dysfunction associated with obesity is unknown. Using a diet-induced obesity (DIO) mouse model, this study investigated whether the inhibition or degradation of NETs could reduce the endothelial dysfunction observed in DIO mice. Following induction of DIO, there were elevated plasma concentrations of monocyte chemoattractant protein-1 (MCP-1) and impairment of mesenteric arteriolar vasorelaxation in response to acetylcholine as measured by pressure myography. A marker of NET formation, cathelicidin-related antimicrobial peptide (CRAMP), was markedly increased in mesenteric arterial walls of DIO mice compared to mice on standard chow. Prevention of NET formation with Cl-amidine or dissolution of NETs with DNase restored endothelium-dependent vasodilation to the mesenteric arteries of DIO mice. These findings suggest an instrumental role for NETs in obesity-induced endothelial dysfunction.
The hormone ouabain has been shown to enhance the cystic phenotype of autosomal dominant polycystic kidney disease (ADPKD). Among other characteristics, the ADPKD phenotype includes cell de-differentiation and epithelial to mesenchymal transition (EMT). Here, we determined whether physiological concentrations of ouabain induces EMT in human renal epithelial cells from patients with ADPKD. We found that ADPKD cells respond to ouabain with a decrease in expression of the epithelial marker E-cadherin and increase in the expression of the mesenchymal markers N-cadherin, α smooth muscle actin (αSMA) and collagen-I; and the tight junction protein occludin and claudin-1. Other adhesion molecules, such as ZO-1, β-catenin and vinculin were not significantly modified by ouabain. At the cellular level, ouabain stimulated ADPKD cell migration, reduced cell-cell interaction, and the ability of ADPKD cells to form aggregates. Moreover, ouabain increased the transepithelial electrical resistance of ADPKD cell monolayers, suggesting that the paracellular transport pathway was preserved in the cells. These effects of ouabain were not observed in normal human kidney (NHK) cells. Altogether these results show a novel role for ouabain in ADPKD, inducing changes that lead to a partial EMT phenotype in the cells. These effects further support the key role that ouabain has as a factor that promotes the cystic characteristics of ADPKD cells.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency leads to lower cholesterol and is associated with reduced vascular complications in the general population. Cholesterol lowering may also have beneficial effects in sickle cell disease (SCD). The objective of this study was to determine effects of PCSK9 deficiency in a mouse model of SCD. Bone marrow transplantation (BMT) was performed from donor SCD mice to wild-type, PCSK9-deficient, and LDLR-deficient recipients to generate SCD controls (Pcsk9+/+, SCDbmt) with preserved PCSK9 status, SCD mice with deficiency of PCSK9 (Pcsk9−/−, SCDbmt), and SCD mice with deficiency of LDLR (Ldlr−/−, SCDbmt). Although cholesterol levels were lower in Pcsk9−/−, SCDbmt mice compared to Pcsk9+/+, SCDbmt mice, anemia was more severe in Pcsk9−/−, SCDbmt mice. Increased reticulocytosis, enhanced ex vivo erythrocyte sickling, and increased erythrocyte phosphatidylserine exposure was also observed. Livers, spleens, and kidneys contained increased iron in Pcsk9−/−, SCDbmt mice compared to Pcsk9+/+, SCDbmt mice consistent with greater hemolysis. SCD mice with deficiency of LDLR (Ldlr−/−, SCDbmt mice) had similar anemia as Ldlr+/+, SCDbmt mice despite higher serum cholesterol. In conclusion, deficiency of PCSK9 is associated with worsened anemia in SCD mice due to increased hemolysis. These findings may have implications for lipid-lowering strategies in patients with SCD, as well as for potential novel modifiers of anemia severity.
Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3 nM) also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells). This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key “executioner” caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells). Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.