Addition of selenium to the nickel(I) complex, [Ni(Me4[12]aneN4)(CO)]PF6, effects a redox reaction leading to the diselenido dinickel(II) complex, {[(Ni(Me4[12]aneN4)]2(Se2)}(PF6)2, in 70% crystalline yield. The product's structure features a μ-η(2):η(2)-Se2 ligand with Se-Se bond length of 2.379(13) Å. Upon mild heating, {[(Ni(Me4[12]aneN4)]2(μ-η(2):η(2)-Se2)}(PF6)2 oxidizes 9,10-dihydroanthracene or 1,4-cyclohexadiene forming the terminal hydroselenide, [Ni(Me4[12]aneN4)(SeH)]PF6, and anthracene or benzene, respectively. [Ni(Me4[12]aneN4)(SeH)]PF6 cleanly converts back to the diselenido dinickel(II) adduct upon addition of a phenoxy radical.
Although there are many examples of acetate complexes, acetamide complexes are virtually unknown. A side-by-side comparison in (acetato-κ(2)O,O')(1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-κ(4)N)nickel(II) hexafluoridophosphate, [Ni(C2H3O2)(C12H28N4)]PF6, (1), and (acetamidato-κ(2)O,O')(1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-κ(4)N)nickel(II) hexafluoridophosphate, [Ni(C2H4NO)(C12H28N4)]PF6, (2), shows the steric equivalence between these two ligands, suggesting that acetamide could be considered as a viable acetate replacement for electronic tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.