HIV-specific chimeric antigen receptor–T cell (CAR T cell) therapies are candidates to functionally cure HIV infection in people with HIV (PWH) by eliminating reactivated HIV-infected cells derived from latently infected cells within the HIV reservoir. Paramount to translating such therapeutic candidates successfully into the clinic will require anti-HIV CAR T cells to localize to lymphoid tissues in the body and eliminate reactivated HIV-infected cells such as CD4 + T cells and monocytes/macrophages. Here we show that i.v. injected anti-HIV duoCAR T cells, generated using a clinical-grade anti-HIV duoCAR lentiviral vector, localized to the site of active HIV infection in the spleen of humanized mice and eliminated HIV-infected PBMCs. CyTOF analysis of preinfusion duoCAR T cells revealed an early memory phenotype composed predominantly of CCR7 + stem cell–like/central memory T cells (T SCM /T CM ) with expression of some effector-like molecules. In addition, we show that anti-HIV duoCAR T cells effectively sense and kill HIV-infected CD4 + T cells and monocytes/macrophages. Furthermore, we demonstrate efficient genetic modification of T cells from PWH on suppressive ART into anti-HIV duoCAR T cells that subsequently kill autologous PBMCs superinfected with HIV. These studies support the safety and efficacy of anti-HIV duoCAR T cell therapy in our presently open phase I/IIa clinical trial (NCT04648046).
HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS). Once in the CNS, these cells release inflammatory mediators that lead to neuroinflammation, and subsequent neuronal damage. Infected monocytes may infect other CNS cells as well as differentiate into macrophages, thus contributing to viral reservoirs and chronic neuroinflammation. Substance use disorders in PWH, including the use of methamphetamine (meth), can exacerbate HIV neuropathogenesis. We characterized the effects of meth on the transcriptional profile of HIV-infected mature monocytes using RNA-sequencing. We found that meth mediated an upregulation of gene transcripts related to viral infection, cell adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We also identified downregulation of several gene transcripts involved in pathogen recognition, antigen presentation, and oxidative phosphorylation pathways. These transcriptomic changes suggest that meth increases the infiltration of mature monocytes that have a migratory phenotype into the CNS, contributing to dysregulated inflammatory responses and viral reservoir establishment and persistence, both of which contribute to neuronal damage. Overall, our results highlight potential molecules that may be targeted for therapy to limit the effects of meth on HIV neuropathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.