The phototrophic purple bacterium Rhodobacter capsulatus encodes two similar but functionally not identical molybdenum-dependent regulator proteins (MopA and MopB), which are known to replace each other in repression of the modABC genes (coding for an ABC-type high-affinity Mo transport system) and anfA (coding for the transcriptional activator of Fe-nitrogenase genes). We identified further Mo-regulated (mor) genes coding for a putative ABC-type transport system of unknown function (MorABC) and a putative Mo-binding protein (
Rhodobacter capsulatus can efficiently grow with taurine as the sole sulfur source. The products of the tpa-tauR-xsc gene region are essential for this activity. TauR, a MocR-like member of the GntR superfamily of transcriptional regulators, activates tpa transcription, as shown by analysis of wild-type and tauR mutant strains carrying a tpa-lacZ reporter fusion. Activation of the tpa promoter requires taurine but is not inhibited by sulfate, which is the preferred sulfur source. TauR directly binds to the tpa promoter, as demonstrated by DNA mobility shift assays. As expected for a transcriptional activator, the TauR binding site is located upstream of the transcription start site, which has been determined by primer extension. Site-directed promoter mutations reveal that TauR binds to direct repeats, an unusual property that has to date been shown for only one other member of the MocR subfamily, namely, GabR from Bacillus subtilis. In contrast, all other members of the GntR family analyzed so far bind to inverted repeats.
In contrast to the majority of cyanobacteria, the unicellular marine cyanobacterium Prochlorococcus marinus MED4 uses an intrinsic divinyl-chlorophyll-dependent light-harvesting system for photosynthesis. Despite the absence of phycobilisomes, this high-light adapted strain possesses -phycoerythrin (CpeB), an S-type lyase (CpeS), and enzymes for the biosynthesis of phycoerythrobilin (PEB) and phycocyanobilin. Of all linear tetrapyrroles synthesized by Prochlorococcus including their 3Z-and 3E-isomers, CpeS binds both isomers of PEB and its biosynthetic precursor 15,16-dihydrobiliverdin (DHBV). However, dimerization of CpeS is independent of bilins, which are tightly bound in a complex at a ratio of 1:1. Although bilin binding by CpeS is fast, transfer to CpeB is rather slow. CpeS is able to attach 3E-PEB and 3Z-PEB to dimeric CpeB but not DHBV. CpeS transfer of 3Z-PEB exclusively yields correctly bound Cys 82 -PEB, whereas Cys 82 -DHBV is a side product of 3E-PEB transfer. Spontaneous 3E-and 3Z-PEB addition to CpeB is faulty, and products are in both cases Cys 82 -DHBV and likely a PEB bound at Cys 82 in a non-native configuration. Our data indicate that CpeS is specific for 3Z-PEB transfer to Cys 82 of phycoerythrin and essential for the correct configuration of the attachment product.
Rhodobacter capsulatus NtrB/NtrC two-component regulatory system controls expression of genes involved in nitrogen metabolism including urease and nitrogen fixation genes. The ntrY-ntrX genes, which are located immediately downstream of the nifR3-ntrB-ntrC operon, code for a two-component system of unknown function. Transcription of ntrY starts within the ntrC-ntrY intergenic region as shown by primer extension analysis, but maximal transcription requires, in addition, the promoter of the nifR3-ntrB-ntrC operon. While ntrB and ntrY single mutant strains were able to grow with either urea or N2 as sole nitrogen source, a ntrB/ntrY double mutant (like a ntrC-deficient strain) was no longer able to use urea or N2. These findings suggest that the histidine kinases NtrB and NtrY can substitute for each other as phosphodonors towards the response regulator NtrC.
The cutO gene of the photosynthetic purple bacterium Rhodobacter capsulatus codes for a multicopper oxidase as demonstrated by the ability of the recombinant Strep-tagged protein to oxidize several mono- and diphenolic compounds known as substrates of Escherichia coli CueO and multicopper oxidases from other organisms. The R. capsulatus cutO gene was shown to form part of a tri-cistronic operon, orf635-cutO-cutR. Expression of the cutO operon was repressed under low copper conditions by the product of the cutR gene. CutO conferred copper tolerance not only under aerobic conditions, as described for the well-characterized E. coli multicopper oxidase CueO, but also under anaerobic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.