BackgroundHispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment.ResultsAmplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life. In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera, Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show paradoxical associations with both obesity and late-life introduction to the USA.ConclusionsOur analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible for health disparities affecting Hispanics living in the USA.
We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly summarized, and key knowledge gaps are highlighted. A lack of quantitative estimates of human exposure to environmental bacteria, in general, and antibiotic-resistant bacteria, specifically, is a significant data gap hindering the assessment of effects on human health. The contribution of horizontal gene transfer to resistance in the environment and conditions that might foster the horizontal transfer of antibiotic resistance genes into human pathogens also need further research. Existing research has focused heavily on human health effects, with relatively little known about the effects of antibiotics and antibiotic resistance on natural and agricultural ecosystems. The proposed causal model is used to elucidate gaps in knowledge that must be addressed by the research community and may provide a useful starting point for the design and analysis of future research efforts.
Background Alterations in gut microbiota (GMB) and host metabolites have been noted in individuals with HIV. However, it remains unclear whether alterations in GMB and related functional groups contribute to disrupted host metabolite profiles in these individuals. Methods This study included 185 women (128 with longstanding HIV infection, 88% under antiretroviral therapy; and 57 women without HIV from the same geographic location with comparable characteristics). Stool samples were analyzed by 16S rRNA V4 region sequencing, and GMB function was inferred by PICRUSt. Plasma metabolomic profiling was performed using liquid chromatography–tandem mass spectrometry, and 133 metabolites (amino acids, biogenic amines, acylcarnitines, and lipids) were analyzed. Results Four predominant bacterial genera were identified as associated with HIV infection, with higher abundances of Ruminococcus and Oscillospira and lower abundances of Bifidobacterium and Collinsella in women with HIV than in those without. Women with HIV showed a distinct plasma metabolite profile, which featured elevated glycerophospholipid levels compared with those without HIV. Functional analyses also indicated that GMB lipid metabolism was enriched in women with HIV. Ruminococcus and Oscillospira were among the top bacterial genera contributing to the GMB glycerophospholipid metabolism pathway and showed positive correlations with host plasma glycerophospholipid levels. One bacterial functional capacity in the acetate and propionate biosynthesis pathway was identified to be mainly contributed by Bifidobacterium; this functional capacity was lower in women with HIV than in women without HIV. Conclusions Our integrative analyses identified altered GMB with related functional capacities that might be associated with disrupted plasma metabolite profiles in women with HIV.
Background Trimethylamine-N-oxide (TMAO), a diet-derived and gut microbiota–related metabolite, is associated with cardiovascular disease (CVD). However, major dietary determinants and specific gut bacterial taxa related to TMAO remain to be identified in humans. Objectives We aimed to identify dietary and gut microbial factors associated with circulating TMAO. Methods This cross-sectional study included 3972 participants (57.3% women) aged 18–74 y from the Hispanic Community Health Study/Study of Latinos in the United States. Dietary information was collected by 24-h dietary recalls at baseline interview (2008–2011), and baseline serum TMAO and its precursors were measured by an untargeted approach. Gut microbiome was profiled by shotgun metagenomic sequencing in a subset of participants (n = 626) during a follow-up visit (2016–2018). Logistic and linear regression were used to examine associations of inverse-normalized metabolites with prevalent CVD, dietary intake, and bacterial species, respectively, after adjustment for sociodemographic, behavioral, and clinical factors. Results TMAO was positively associated with prevalent CVD (case number = 279; OR = 1.34; 95% CI: 1.17, 1.54, per 1-SD). Fish (P = 1.26 × 10−17), red meat (P = 3.33 × 10−16), and egg (P = 3.89 × 10−5) intakes were top dietary factors positively associated with TMAO. We identified 9 gut bacterial species significantly associated with TMAO (false discovery rate <0.05). All 4 species positively associated with TMAO belong to the order Clostridiales, of which 3 might have homologous genes encoding carnitine monooxygenase, an enzyme converting carnitine to trimethylamine (TMA). The red meat–TMAO association was more pronounced in participants with higher abundances of these 4 species compared with those with lower abundance (Pinteraction = 0.013), but such microbial modification was not observed for fish–TMAO or egg–TMAO associations. Conclusion In US Hispanics/Latinos, fish, red meat, and egg intakes are major dietary factors associated with serum TMAO. The identified potential TMA-producing gut microbiota and microbial modification on the red meat–TMAO association support microbial TMA production from dietary carnitine, whereas the fish–TMAO association is independent of gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.