Grazing on natural rangelands, which are areas dominated by native vegetation that are used for livestock grazing, can achieve desired vegetation outcomes, preserve native habitat, and economically benefit multiple stakeholders. It is a powerful tool that can be manipulated to reduce wildlife declines and benefit ecosystems. However, the benefits of conservation grazing systems on many wildlife communities remain relatively unexplored. We compared songbird communities between two grazing systems in eastern Montana: rest-rotation, which is a conservation grazing system, and season-long. We measured differences in abundance of eight songbird species over a two year period using dependent double-observer transect surveys and a multispecies dependent double-observer abundance model. The species were chosen to be representative of the sagebrush grassland community: a sagebrush obligate, Brewer's sparrow (Spizella breweri); a faculatative grassland species, brown-headed cowbird (Molothrus ater); grassland obligate species, chestnut-collared longspur (Calcarius ornatus), horned lark (Eremophila alpestris), lark bunting (Calamospiza melanocorys), McCown's longspur (Rhynchophanes mccownii), and western meadowlark (Sturnella neglecta); and a generalist, vesper sparrow (Pooecetes gramineus). Our results show that these species exhibit mixed responses to these two grazing systems. The sagebrush obligate (Brewer's sparrow), generalist (vesper sparrow), and two grassland associated species (horned lark and chestnut-collared longspur) were equally abundant on both grazing systems, suggesting grazing system had no effect on their abundance. However, the remainder of the grassland associated species showed a response to grazing: three (brown-headed cowbird, lark bunting, and western meadowlark) were more abundant in season-long than rest-rotation, whereas one (McCown's longspur) was more abundant in rest-rotation. These results suggest that differences in grazing management affect a subset of grassland obligate species and that only one species, McCown's longspur, preferred conservation grazing. Our findings provide useful information for assessing the suitability of grazing as a conservation tool for songbirds.
Conservation of biological communities requires accurate estimates of abundance for multiple species. Recent advances in estimating abundance of multiple species, such as Bayesian multispecies N‐mixture models, account for multiple sources of variation, including detection error. However, false‐positive errors (misidentification or double counts), which are prevalent in multispecies data sets, remain largely unaddressed. The dependent‐double observer (DDO) method is an emerging method that both accounts for detection error and is suggested to reduce the occurrence of false positives because it relies on two observers working collaboratively to identify individuals. To date, the DDO method has not been combined with advantages of multispecies N‐mixture models. Here, we derive an extension of a multispecies N‐mixture model using the DDO survey method to create a multispecies dependent double‐observer abundance model (MDAM). The MDAM uses a hierarchical framework to account for biological and observational processes in a statistically consistent framework while using the accurate observation data from the DDO survey method. We demonstrate that the MDAM accurately estimates abundance of multiple species with simulated and real multispecies data sets. Simulations showed that the model provides both precise and accurate abundance estimates, with average credible interval coverage across 100 repeated simulations of 94.5% for abundance estimates and 92.5% for detection estimates. In addition, 92.2% of abundance estimates had a mean absolute percent error between 0% and 20%, with a mean of 7.7%. We present the MDAM as an important step forward in expanding the applicability of the DDO method to a multispecies setting. Previous implementation of the DDO method suggests the MDAM can be applied to a broad array of biological communities. We suggest that researchers interested in assessing biological communities consider the MDAM as a tool for deriving accurate, multispecies abundance estimates.
Estimating species abundance is important for land managers, especially for monitoring conservation efforts. The two main survey methods for estimating avian abundance are point counts and transects. Previous comparisons of these two methods have either been limited to a single species or have not included detection probability. During the 2012 breeding season, we compared and assessed the efficiency (precision for amount of effort) of point count time of detection (PCTD) and dependent double‐observer transect (TRMO) methods based on detection probabilities and abundance estimates of five species of songbirds that use a range of habitats in a prairie system in Montana dominated by sagebrush and grassland vegetation. Our focal species included Vesper Sparrows (Pooecetes gramineus), a generalist species found in both shrub and grassland habitat, shrub‐obligate Brewer's Sparrows (Spizella breweri), and McCown's Longspurs (Rhynchophanes mccownii), Horned Larks (Eremophila alpestris), and Western Meadowlarks (Sturnella neglecta), three species of grassland obligates that prefer different grass heights. Detection probabilities were significantly higher for TRMO surveys, with less variation for all five species and differences most pronounced for Brewer's Sparrows and Horned Larks. PCTD surveys required less field effort (~8–20 fewer people minutes per plot) than TRMO surveys because the TRMO surveys required two people. However, time spent on TRMO surveys provided between 0.38 and 87 times more precision per people minute than PCTD surveys. Our results suggest that TRMO surveys provide a more efficient (measured as time spent per unit of standard error) field‐based technique in sagebrush prairie systems for the species we investigated, resulting in more precise detection and abundance estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.