Allergic asthma is a chronic lung disease initiated and driven by Th2 cytokines IL-4/-13. In macrophages, IL-4/-13 bind IL-4 receptors, which signal through insulin receptor substrate (IRS)-2, inducing M2 macrophage differentiation. M2 macrophages correlate with disease severity and poor lung function, although the mechanisms that regulate M2 polarization are not understood. Following IL-4 exposure, suppressor of cytokine signaling (SOCS)1 is highly induced in human monocytes. We found that siRNA knockdown of SOCS1 prolonged IRS-2 tyrosine phosphorylation and enhanced M2 differentiation, although siRNA knockdown of SOCS3 did not affect either. By co-immunoprecipitation, we found that SOCS1 complexes with IRS-2 at baseline, and this association increased after IL-4 stimulation. Because SOCS1 is an E3 ubiquitin ligase, we examined the effect of proteasome inhibitors on IL-4-induced IRS-2 phosphorylation. Proteasomal inhibition prolonged IRS-2 tyrosine phosphorylation, increased ubiquitination of IRS-2, and enhanced M2 gene expression. siRNA knockdown of SOCS1 inhibited ubiquitin accumulation on IRS-2, although siRNA knockdown of SOCS3 had no effect on ubiquitination of IRS-2. Monocytes from healthy and allergic individuals revealed that SOCS1 is induced by IL-4 in healthy monocytes but not allergic cells, whereas SOCS3 is highly induced in allergic monocytes. Healthy monocytes displayed greater ubiquitination of IRS-2 and lower M2 polarization than allergic monocytes in response to IL-4 stimulation. Here, we identify SOCS1 as a key negative regulator of IL-4-induced IRS-2 signaling and M2 differentiation. Our findings provide novel insight into how dysregulated expression of SOCS increases IL-4 responses in allergic monocytes, and this may represent a new therapeutic avenue for managing allergic disease.Allergic asthma is an immune disorder characterized by elevation of total and specific IgE and infiltration of monocytes, lymphocytes, mast cells, eosinophils, and basophils in the lungs that causes inflammation and wheezing, cough, and dyspnea (1-4). A complex interplay of genetic and environmental factors contributes to the onset and maintenance of these diseases. Mechanistically, it is known that cytokines secreted from Th2 cells, such as interleukin (IL)-4, IL-5, IL-9, and IL-13, have a pivotal role in dictating the pathology of allergic disease (1, 2, 5, 6). The pathways by which IL-4 and IL-13 exert their biological effects have been a major focus of research and development of therapeutics to block their action through type I and II IL-4 receptors. Previously, we showed that in macrophages, IL-4 engagement of the type I IL-4 receptor resulted in robust tyrosine phosphorylation of insulin receptor substrate (IRS)-2, recruitment of p85 regulatory subunit of PI3K and GRB2, and strong induction of a subset of hallmark M2, also known as M(IL-4) (7), macrophage genes (8, 9). In contrast, IL-13 binding to the type II receptor resulted in only modest IRS-2 phosphorylation. Increasing the concentration of IL-13 did n...
BackgroundInvariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown. In addition, transcriptional control of differentiation of iNKT cells into iNKT cell effector subsets in the thymus during development is also unclear. In this report we show that β-catenin dependent mechanisms direct differentiation of iNKT2 and iNKT17 subsets but not iNKT1 cells.MethodsTo study the role for β-catenin in lung inflammation we utilize mice with conditional deletion and enforced expression of β-catenin in a well-established mouse model for IL-25-dependen lung inflammation.ResultsSpecifically, we demonstrate that conditional deletion of β-catenin permitted development of mature iNKT1 cells while impeding maturation of iNKT2 and 17 cells. A role for β-catenin expression in promoting iNKT2 and iNKT17 subsets was confirmed when we noted that enforced transgenic expression of β-catenin in iNKT cell precursors enhanced the frequency and number of iNKT2 and iNKT17 cells at the cost of iNKT1 cells. This effect of expression of β-catenin in iNKT cell precursors was cell autonomous. Furthermore, iNKT2 cells acquired greater capability to produce type-2 cytokines when β-catenin expression was enhanced.DiscussionThis report shows that β-catenin deficiency resulted in a profound decrease in iNKT2 and iNKT17 subsets of iNKT cells whereas iNKT1 cells developed normally. By contrast, enforced expression of β-catenin promoted the development of iNKT2 and iNKT17 cells. It was important to note that the majority of iNKT cells in the thymus of C57BL/6 mice were iNKT1 cells and enforced expression of β-catenin altered the pattern to iNKT2 and iNKT17 cells suggesting that β-catenin may be a major factor in the distinct pathways that critically direct differentiation of iNKT effector subsets.ConclusionsThus, we demonstrate that β-catenin expression in iNKT cell precursors promotes differentiation toward iNKT2 and iNKT17 effector subsets and supports enhanced capacity to produce type 2 and 17 cytokines which in turn augment lung inflammation in mice.
Asthma is a chronic inflammation of the airways that exhibits sex differences, affecting mostly boys in childhood and women in adulthood. Alveolar macrophages have emerged as major mediators of allergic lung inflammation. We hypothesized that alveolar macrophages respond to estrogen by enhancing M2 responses and thereby contribute to sex differences in asthma. We found that macrophages from female mice exhibited increased expression of canonical M2 markers like Ym1 and Arg1 in response to IL-4. Signaling through ERα further enhanced IL-4-induced M2 gene expression in macrophages from female mice. The promoters of these genes contained increased abundance of transcriptionally active modifications like H3Ac and H3K4Me3 in macrophages from female mice. Using an OVA model of allergic lung inflammation, we found that female mice exhibited enhanced M2-polarization in vivo after allergen challenge. M2-polarization was impaired in ovariectomized (OVx) mice and but was restored with estrogen replacement. Further, we established a mixed bone marrow chimera model whereby irradiated mice were reconstituted with a 1:1 mix of bone marrow from CD45.1+ WT and CD45.2+ LysMCREERαflox/flox mice. In these mice, ERα-sufficient alveolar macrophages exhibited enhanced M2-polarization compared to ERα−/− alveolar macrophages. ERα−/−cells were largely retained in the bone marrow, suggesting that E2 regulates leukocyte trafficking during lung inflammation. Together these data suggest that sex and hormonal factors contribute to sex differences in macrophage responses during asthma. Understanding the role of estrogen signaling in M2-polarization is paramount for identifying novel therapeutic targets to better treat women with asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.