Sandy shorelines are constantly evolving, threatening frequently human assets such as buildings or transport infrastructure. In these environments, sea-level rise will exacerbate coastal erosion to an amount which remains uncertain. Sandy shoreline change projections inherit the uncertainties of future mean sea-level changes, of vertical ground motions, and of other natural and anthropogenic processes affecting shoreline change variability and trends. Furthermore, the erosive impact of sea-level rise itself can be quantified using two fundamentally different models. Here, we show that this latter source of uncertainty, which has been little quantified so far, can account for 20 to 40% of the variance of shoreline projections by 2100 and beyond. This is demonstrated for four contrasting sandy beaches that are relatively unaffected by human interventions in southwestern France, where a variance-based global sensitivity analysis of shoreline projection uncertainties can be performed owing to previous observations of beach profile and shoreline changes. This means that sustained coastal observations and efforts to develop sea-level rise impact models are needed to understand and eventually reduce uncertainties of shoreline change projections, in order to ultimately support coastal land-use planning and adaptation.
The characterisation of past coastal flood events is crucial for risk prevention. However, it is limited by the partial nature of historical information on flood events and the lack or limited quality of past hydro-meteorological data. In addition coastal flood processes are complex, driven by many hydrometeorological processes, making mechanisms and probability analysis challenging. Here, we tackle these issues by joining historical, statistical and modelling approaches. We focus on a macrotidal site (Gâvres, France) subject to overtopping and investigate the 1900-2010 period. We build a continuous hydro-meteorological database and a damage event database using archives, newspapers, maps and aerial photographies. Using together these historic information, hindcasts and hydrodynamic models, we identify 9 flood events, among which 5 are significant flood
As low-lying coastal areas can be impacted by flooding caused by dynamic components that are dependent on each other (wind, waves, water levels—tide, atmospheric surge, currents), the analysis of the return period of a single component is not representative of the return period of the total water level at the coast. It is important to assess a joint return period of all the components. Based on a semiparametric multivariate extreme value analysis, we determined the joint probabilities that significant wave heights (Hs), wind intensity at 10 m above the ground (U), and still water level (SWL) exceeded jointly imposed thresholds all along the Corsica Island coasts (Mediterranean Sea). We also considered the covariate peak direction (Dp), the peak period (Tp), and the wind direction (Du). Here, we focus on providing extreme scenarios to populate coastal hydrodynamic models, SWAN and SWASH-2DH, in order to compute the 100-year total water level (100y-TWL) all along the coasts. We show how the proposed multivariate extreme value analysis can help to more accurately define low-lying zones potentially exposed to coastal flooding, especially in Corsica where a unique value of 2 m was taken into account in previous studies. The computed 100y-TWL values are between 1 m along the eastern coasts and a maximum of 1.8 m on the western coast. The calculated values are also below the 2.4 m threshold recommended when considering the sea level rise (SLR). This highlights the added value of performing a full integration of extreme offshore conditions, together with their dependence on hydrodynamic simulations for screening out the coastal areas potentially exposed to flooding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.