Lipid nanodiscs are widely used platforms for studying membrane proteins in a near-native environment. Lipid nanodiscs made with membrane scaffold proteins (MSPs) in the linear form have been well studied. Recently, a new kind of nanodisc made with MSPs in the circular form, referred to as covalently circularized nanodiscs (cNDs), has been reported to have some possible advantages in various applications. Given the potential of nanodisc technology, researchers in the field are very interested in learning more about this new kind of nanodisc, such as its reproducibility, production yield, and the possible pros and cons of using it. However, research on these issues is lacking. Here, we report a new study on nanodiscs made with circular MSPs, which are produced from a method different from the previously reported method. We show that our novel production method, detergent-assisted sortase-mediated ligation, can effectively avoid high-molecular-weight byproducts and also significantly improve the yield of the target proteins up to around 80% for larger circular MSP constructs. In terms of the application of circular MSPs, we demonstrate that they can be used to assemble nanodiscs using both synthetic lipids and native lipid extract as the source of lipids. We also show that bacteriorhodopsin can be successfully incorporated into this new kind of cND. Moreover, we found that cNDs have improved stability against both heat and high-concentration-induced aggregations, making them more beneficial for related applications.
Metrics & MoreArticle Recommendations * sı Supporting Information ABSTRACT: "Spin" has been recently reported as an important degree of electronic freedom to improve the performance of electrocatalysts and photocatalysts. This work demonstrates the manipulations of spin-polarized electrons in CsPbBr 3 halide perovskite nanoplates (NPLs) to boost the photocatalytic CO 2 reduction reaction (CO 2 RR) efficiencies by doping manganese cations (Mn 2+ ) and applying an external magnetic field. Mn-doped CsPbBr 3 (Mn-CsPbBr 3 ) NPLs exhibit an outstanding photocatalytic CO 2 RR compared to pristine CsPbBr 3 NPLs due to creating spinpolarized electrons after Mn doping. Notably, the photocatalytic CO 2 RR of Mn-CsPbBr 3 NPLs is significantly enhanced by applying an external magnetic field. Mn-CsPbBr 3 NPLs exhibit 5.7 times improved performance of photocatalytic CO 2 RR under a magnetic field of 300 mT with a permanent magnet compared to pristine CsPbBr 3 NPLs. The corresponding mechanism is systematically investigated by magnetic circular dichroism spectroscopy, ultrafast transient absorption spectroscopy, and density functional theory simulation. The origin of enhanced photocatalytic CO 2 RR efficiencies of Mn-CsPbBr 3 NPLs is due to the increased number of spin-polarized photoexcited carriers by synergistic doping of the magnetic elements and applying a magnetic field, resulting in prolonged carrier lifetime and suppressed charge recombination. Our result shows that manipulating spin-polarized electrons in photocatalytic semiconductors provides an effective strategy to boost photocatalytic CO 2 RR efficiencies.
Antibiotic susceptibility test (AST) is essential in clinical diagnosis of serious bacterial infection, such as sepsis, while it typically takes 2−5 days for sample culture, antibiotic treatment, and reading result. Detecting metabolites secreted from bacteria with surface-enhanced Raman scattering (SERS) enables rapid determination of antibiotic susceptibility, reducing the AST time to 1−2 days. However, it still requires 1 day of culture time to obtain sufficient quantity of bacteria for sample washing, bacterial extraction, and antibiotic treatment. Additionally, the whole procedure, manually performed in open environment, often suffers from contamination and human error. To address the above problems, a microfluidic system integrating membrane filtration and the SERS-active substrate (MF-SERS) was developed to perform on-chip bacterial enrichment, metabolite collection, and in situ SERS measurements for antibiotic susceptibility test. Using Escherichia coli as the prototype bacterium, the lowest SERS detection limit of bacterial concentration of the MF-SERS system is 10 3 CFU/mL, which is 4 orders of magnitude lower than that using centrifugation−purification procedure, significantly shortening the bacterial culture time. The bacteria and secreted metabolites are enclosed during bacterial trapping, metabolite filtration, and SERS detection, thus minimizing possible contamination and human errors. Finally, the successful demonstration of AST on E. coli with a concentration of 10 3 CFU/mL is presented. Overall, the MF-SERS system with a miniature size and well-confined microenvironment allows the integration of multiple bacteria processes for bacterial enrichment, culture, and determination of AST.
A novel flexible SERS substrate with 3D hot-junction capability by employing the nanohybrids of silver nanoparticles and silicate platelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.