Hematocrit (HCT) tests are widely performed to screen blood donors and to diagnose medical conditions. Current HCT test methods include conventional microhematocrit, Coulter counter, CuSO4 specific gravity, and conductivity-based point-of-care (POC) HCT devices, which can be either expensive, environmentally inadvisable, or complicated. In the present work, we introduce a new and simple microfluidic system for a POC HCT determination. HCT was determined by measuring current responses of blood under 100 V DC for 1 min in a microfluidic device containing a single microchannel with dimensions of 180 μm by 70 μm and 10 mm long. Current responses of red blood cell (RBC) suspensions in PBS or separately plasma at HCT concentrations of 10, 20, 25, 30, 35, 40, 45, 50, 55, 60, and 70 vol% were measured to show feasibility of the microfluidic system for HCT determination. Key parameters affecting current responses included electrolysis bubbles and irreversible RBC adsorption; parameters were optimized via addition of nonionic surfactant Triton X-100 into sample solution and carbonizing electrode surfaces. The linear trend line of current responses over a range of RBC concentrations were obtained in both PBS and plasma. This work suggested that a simple microfluidic device could be a promising platform for a new POC HCT device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.