The use of flexible films in agriculture has increased intensely in the last 15 years bringing benefits to producers. However, environmental impacts increased due to their incorrect post‐use disposal which leads the degradable films to emerge as an alternative. The production films of poly(butylene adipate‐co‐terephthalate) and poly(lactic acid) reinforced with calcium carbonate (CaCO3) was studied focusing on producing lower cost materials and flexible films. Four different films (reinforcement compositions) were prepared by melt extrusion with 10 and 20 wt % of CaCO3. Mechanical and thermal properties, crystallinity, water absorption, and soil degradation, were evaluated. The addition of reinforcement leads to improved compatibility between the polymers in the matrix, which usually presented phase segregation. The films showed better mechanical properties with the addition of CaCO3. Highly orientated amorphous structures were obtained leading to low water absorption and low degradation in the simulated soil. This low degradation, suggests that the obtained films would be of interest in flexible mulch films manufacturing, particularly for Muridori plantation system, where long‐term plantations are needed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46660.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.