Sistemas de monitoramento baseados em câmeras são cada vez mais onipresentes em ambientes internos e externos. A existência de um sistema de monitoramento não garante, porém, que todas as informações coletadas sejam utilizadas e/ou analisadas. Quando uma interpretação das imagens é necessária, usualmente recorre-se à visão computacional. Neste contexto particular, métodos de Deep Learning têm recebido crescente atenção. De fato, apesar de seu desenvolvimento recente, alguns destes métodos estão disponı́veis em bibliotecas e pacotes de software de forma pré-treinada, permitindo sua aplicação com relativa facilidade. Neste trabalho diferentes métodos de Deep Learning disponı́veis na biblioteca OpenCV foram comparados para a detecção e contagem de pessoas em ambientes internos. Os métodos foram comparados quanto à sua precisão, revocação e tempo de detecção. Para a aplicação considerada, os resultados obtidos sugerem que o método YOLO (v3) apresenta um bom compromisso entre medida F1 e tempo de reconhecimento. A detecção precisa e rápida de pessoas pode vir a auxiliar futuramente, por exemplo, na estimação da carga térmica observada e consequente ajuste de sistemas de condicionamento de ar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.