The pattern of accumulation of Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, family Closteroviridae) RNA has been analyzed in several cucurbit accessions. In susceptible accessions of melon (Cucumis melo), cucumber (Cucumis sativus), marrow (Cucurbita maxima), and squash (Cucurbita pepo), CYSDV RNA accumulation peaked during the first to second week postinoculation in the first to third leaf above the inoculated one; younger leaves showed very low or undetectable levels of CYSDV. Three melon accessions previously shown to remain asymptomatic after CYSDV inoculation under natural conditions were also assayed for their susceptibility to CYSDV. Hybridization and reverse transcription-polymerase chain reaction (RT-PCR) analysis of noninoculated leaves showed that only one of these, C-105, remained virus-free for up to 6 weeks after whitefly inoculation. In this accession, very low CYSDV levels were detected by RT-PCR in whitefly-inoculated leaves, and therefore, multiplication or spread of CYSDV in C-105 plants appeared to remain restricted to the inoculated leaves. When C-105 plants were graft inoculated, CYSDV RNA could be detected in phloem tissues, but the systemic colonization of C-105 by CYSDV upon graft inoculation seemed to be seriously impeded. Additionally, in situ hybridization experiments showed that, after C-105 graft inoculation, only a portion of the vascular bundles in petioles and stems were colonized by CYSDV and virus could not be found in leaf veins. RT-PCR experiments using primers to specifically detect negative-sense CYSDV RNA were carried out and showed that CYSDV replication took place in graft-inoculated C-105 scions. Therefore, the resistance mechanism may involve a restriction of the virus movement in the vascular system of the plants and/or prevention of high levels of virus accumulation.
Tomato yellow leaf curl disease (TYLCD) is a severe threat to tomato crops worldwide and is caused by Tomato yellow leaf curl virus (TYLCV) and several other begomoviruses (genus Begomovirus, family Geminiviridae). Host plant resistance is the best TYLCD control method but limited sources of resistance are available. In this study, two Solanum habrochaites TYLCD-resistance sources, EELM-388 and EELM-889, were found after a wide germplasm screening and were further characterized. A consistent resistance to the widely distributed strain TYLCV-IL was observed when plants were inoculated by Bemisia tabaci or by agroinoculation using an infectious clone, with no symptoms or virus accumulation observed in inoculated plants. Moreover, the resistance was effective under field conditions with high TYLCD pressure. Two independent loci, one dominant and one recessive, were associated with EELM-889 resistance. The study shows these loci to be distinct from that of the resistance gene (Ty-1 gene) commonly deployed in commercial tomato cultivars. Therefore, both kinds of resistance could be combined to provide improved resistance to TYLCD. Four additional TYLCD-associated viruses were challenged, showing that the resistance always prevented symptom expression, although systemic infection could occur in some cases. By using chimeric and mutant expression constructs, the C4 protein was shown to be associated with the ability to result in effective systemic infection.
Three hundred accessions of Cucumis sativus, including wild cucumbers, land races, traditional cultivars, and breeding lines, were evaluated under natural-infection conditions in order to identify potential sources of resistance to Cucurbit yellow stunting disorder virus (CYSDV). Although 100% of the susceptible control plants showed typical yellowing symptoms induced by CYSDV, another 24 C. sativus accessions showed partial or total absence of yellowing symptoms. In contrast, when CYSDV inoculation was carried out under controlled conditions, only two (A1 and A2) of these 24 accessions showed resistance to the virus. The nature of the resistance found in A1 and A2 plants was characterized by studying the pattern of virus accumulation and symptom development under controlled infection conditions, and by analyzing the possible nonpreference of Bemisia tabaci for these accessions under free-choice conditions. There was a delay in the establishment of the CYSDV infection in A1 and A2 plants which was evident shortly after inoculation and in apical leaves of the plants at long times after inoculation. Symptom severity was also less for A1 and A2 than for a susceptible control at 8 and 12 weeks postinoculation. Thus, delayed viral infection appeared to be associated with decreased symptom severity in A1 and A2 plants. Our results also showed nonpreference for plants of the A2 accession by B. tabaci, the CYSDV vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.