BackgroundIn complex microbial ecosystems such as the marine environment, the gastrointestinal tract, but also in mixed culture fermentations, bacteriophages are frequently found to be a part of the microbial community. Moreover, prophages or prophage-like elements are frequently identified in sequenced bacterial genomes. The mixed undefined starter cultures represent an ecosystem which is shaped by long term evolution under relatively defined environmental conditions and provides an interesting model to study co-evolution of phages and their hosts as well as the impact of diversity on microbial community stability.ResultsIn the present study we investigated the presence, identity and behaviour of prophages in lactococci being part of a complex cheese starter culture. Genome analysis of representative strains of the 7 genetic lineages of Lactococcus lactis constituting the culture indicated the presence of prophages in all strains. Exposure of potential lysogens to mitomycin C confirmed the release of ~ 1010·ml− 1 phage particles from all tested strains. Furthermore, phages were also released in substantial amounts due to spontaneous induction: more than 108·ml− 1 phage particles were present in cultures under non-inducing conditions. This observation suggests continuous release of phage particles by the lactococci. The released bacteriophages exhibited an unusual morphology. For most strains tested, tailless icosahedral phage heads were found. The competitive advantage of lysogens compared to their cured derivatives and their high abundance in the culture suggests that the released tailless bacteriophages play an important role in the ecosystem.ConclusionsThe results of this study indicate that chromosomal genetic elements are active participants in the stable complex microbial community of the starter culture. We show that prophages are abundant in such a community, are produced continuously in large amounts and, despite the huge metabolic burden imposed on the cells by phage particle production, provide a selective advantage to the host.Electronic supplementary materialThe online version of this article (10.1186/s12866-018-1229-1) contains supplementary material, which is available to authorized users.
Lactococcus lactis strains residing in the microbial community of a complex dairy starter culture named “Ur” are hosts to prophages belonging to the family Siphoviridae . L. lactis strains (TIFN1 to TIFN7) showed detectable spontaneous phage production and release (10 9 -10 10 phage particles/mL) and up to 10-fold increases upon prophage induction, while in both cases we observed no obvious cell lysis, typically described for the lytic life cycle of Siphoviridae phages. Intrigued by this phenomenon, we investigated the host-phage interaction using strain TIFN1 (harboring prophage proPhi1) as a representative. We confirmed that during the massive phage release, all bacterial cells remain viable. Further, by monitoring phage replication in vivo , using a green fluorescence protein reporter combined with flow cytometry, we demonstrated that the majority of the bacterial population (over 80%) is actively producing phage particles when induced with mitomycin C. The released tailless phage particles were found to be engulfed in lipid membranes, as evidenced by electron microscopy and lipid staining combined with chemical lipid analysis. Based on the collective observations, we propose a model of phage-host interaction in L. lactis TIFN1, where the phage particles are engulfed in membranes upon release, thereby leaving the producing host intact. Moreover, we discuss possible mechanisms of chronic, or non-lytic release of LAB Siphoviridae phages and its impact on the bacterial host. Importance: In complex microbial consortia such as fermentation starters, bacteriophages can alter the dynamics and diversity of microbial communities. Bacteriophages infecting Lactococcus lactis are mostly studied for their detrimental impact on industrial dairy fermentation processes. In the submitted article, we describe a novel way of phage-bacteria interaction in a L. lactis strain isolated from a complex dairy starter culture: when the prophages harbored in the L. lactis genome are activated, the phage particles are engulfed in lipid membranes upon release, leaving the producing host intact. Findings from this study provide additional insights into the diverse manners of phage-bacteria interactions and co-evolution, which is essential for understanding the population dynamics in complex microbial communities like fermentation starters.
Lactococcus lactis strains residing in the microbial community of a complex dairy starter culture named 'Ur' are hosts to prophages belonging to the family Siphoviridae. L. lactis strains (TIFN1 to TIFN7) showed detectable spontaneous phage production and release (109-1010 phage particles/mL) and up to 10-fold increases upon prophage induction, while in both cases we observed no obvious cell lysis, typically described for the lytic life cycle of Siphoviridae phages. Intrigued by this phenomenon, we investigated the host-phage interaction using strain TIFN1 (harboring prophage proPhi1) as a representative. We confirmed that during the massive phage release, all bacterial cells remain viable. Further, by monitoring phage replication in vivo, using a green fluorescence protein reporter combined with flow cytometry, we demonstrated that the majority of the bacterial population (over 80%) is actively producing phage particles when induced with mitomycin C. The released tailless phage particles were found to be engulfed in lipid membranes, as evidenced by electron microscopy and lipid staining combined with chemical lipid analysis. Based on the collective observations, we propose a model of phage-host interaction in L. lactis TIFN1, where the phage particles are engulfed in membranes upon release, thereby leaving the producing host intact. Moreover, we discuss possible mechanisms of chronic, or non-lytic release of LAB Siphoviridae phages and its impact on the bacterial host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.