This paper aims at clarifying the process of formation and transformation of house types in San Francisco area, in the old quarter of Cadiz. Authors did intensive fieldwork in the year 2009 to investigate the current condition of extant buildings, compiling a database for 83 heritage properties registered as architectural heritage by the local authorities. Historical records and planning documents have been used to trace back the origins of these types and their transformation through a time span of 400 years based on the fieldwork on their current situation. As a result, these types can be understood with respect to their main elements pertaining building morphology.
Including recycled waste material in cement mixes, as substitutes for natural aggregates, has resulted in diverse research projects, normally focused on mechanical capacities. In the case of recycled glass as an aggregate, this provides a noticeable improvement in thermal properties, depending on its dosage. This idea raises possible construction solutions that reduce the environmental impact and improves thermal behavior. For this research, an extended building typology that is susceptible to experiencing the risk of energy poverty has been chosen. The typology is typical for social housing, built using mortar blocks with crushed glass. First, the basic thermophysical properties of the mortars were determined by laboratory tests; after that, the dynamic thermal properties of representative constructive solutions using these mortars were simulated in seven representative climate zones in Chile. An analysis methodology based on periodic thermal transmittance, adaptive comfort levels and energy demand was run for the 21 proposed models. In addition, the results show that thermal comfort hours increases significantly in thermal zones 1, 2, 3 and 6; from 23 h up to 199 h during a year. It is in these zones where the distance with respect to the neutral temperature of the m50 solution reduces that of the m25 solution by half; i.e., in zone 1, from −429 °C with the m25 solution to −864 °C with the m50. This research intends to be a starting point to generate an analysis methodology for construction solutions in the built environment, from the point of view of thermal comfort.
Adaptive thermal comfort has gained momentum within the scientific community as a cost effective and affordable way of maintaining acceptable levels of comfort in dwellings while abating energy expenditure. At the moment two international standards, namely the European EN16798-1 and the American ASHRAE55-2010 shape the understanding of adaptive comfort around the world. However, in recent years concerns have raised about whether they can accurately represent comfort conditions considering the cultural and societal background of different countries, and whether adaptive thermal comfort will be still feasible in future scenarios of climate change. Considering these challenges, this study presents an algorithm which can model different adaptive comfort models; additionally, it can be implemented into energy simulation engines and therefore used to predict energy consumption under different climates, building typologies, and dynamic comfort conditions. This contribution presents the development of the aforementioned algorithm, called ACCIS (Adaptive-Comfort-Control-Implementation Script), originally written in EnergyPlus Runtime Language (ERL) and later nested in a Python package called ACCIM (Adaptive-Comfort-Control-Implemented Model)”, its main characteristics, and also the implementation into two cases studies: The thermal comfort in social dwellings in Spain and Japan considering present and future climate change scenarios namely Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 for years 2050, 2080 and 2100. The results show that the predicted energy consumption of low-income families is strongly influenced by the adaptive comfort model chosen to model their thermal routine and suggest that international standards should be put under revision to consider the local particularities of dwellers in subsidized housing projects. The results of this research can be useful to devise public policies aimed at abating energy cost for low-income dwellers that benefit from social housing programs, particularly in the light of the increment of energy costs for heating and cooling associated with climate change..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.