The Norway or brown rat (Rattus norvegicus) is among the most ubiquitous of rodents. However, the lack of studies describing Norway rat populations from tropical areas have limited our understanding regarding their demography and seasonal dynamics. In this study, we describe seasonal pattern in the abundance, reproductive parameters, and morphometrics of Norway rat populations in Salvador, Brazil. Rodents were trapped over four seasonal trapping periods (2013–2014) from three valleys. A total of 802 Norway rats were trapped over the course of the study over 7653 trap-nights. Norway rat abundance was high, but there was no significant differences between seasons. The reproductive parameters (e.g. frequency of pregnant and lactating females) did not show statistical differences between seasons. Female rats collected in the rainy season were heavier and older than females from the dry season. Salvador rats had a high incidence of pregnancy and birth rate (estimated birth rate of 79 young per year) compared to previous studies. The information generated is critical for the understanding of the ecology of Norway rat, the main reservoir of Leptospira in Salvador. However, future studies examining the effect of rodent control programs aimed at reducing populations, and determining rates of recovery, will further clarify our understanding of population dynamics.
The Norway rat (Rattus norvegicus) is a key pest species globally and responsible for seasonal outbreaks of the zoonotic bacterial disease leptospirosis in the tropics. The city of Salvador, Brazil, has seen recent and dramatic increases in human population residing in slums, where conditions foster high rat density and increasing leptospirosis infection rates. Intervention campaigns have been used to drastically reduce rat numbers. In planning these interventions, it is important to define the eradication units ‐ the spatial scale at which rats constitute continuous populations and from where rats are likely recolonizing, post‐intervention. To provide this information, we applied spatial genetic analyses to 706 rats collected across Salvador and genotyped at 16 microsatellite loci. We performed spatially explicit analyses and estimated migration levels to identify distinct genetic units and landscape features associated with genetic divergence at different spatial scales, ranging from valleys within a slum community to city‐wide analyses. Clear genetic breaks exist between rats not only across Salvador but also between valleys of slums separated by <100 m—well within the dispersal capacity of rats. The genetic data indicate that valleys may be considered separate units and identified high‐traffic roads as strong impediments to rat movement. Migration data suggest that most (71–90%) movement is contained within valleys, with no clear source population contributing to migrant rats. We use these data to recommend eradication units and discuss the importance of carrying out individual‐based analyses at different spatial scales in urban landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.