Due to rapid human expansion in the last century, wildlife roadkill is becoming a concerning threat to biodiversity and human safety. The frequency of roadkill events depends on factors related to specific traits of the road –fencing, tortuosity, or type of habitat, among others– and the animal ecology –such as activity patterns, reproductive season, thermoregulation– which, in turn, are related to environmental factors (with seasonal variations). Here we assessed roadkill mortality of terrestrial vertebrates over the year. To do this, we sampled 10 road sections (of 3 km, by walk) in the south of Spain for a full year, registering the carcasses of run-over vertebrates. Then, we analysed the spatiotemporal patterns of roadkill events for the four vertebrates’ classes and the effects of road traits (presence of fence, tortuosity, distance to water body) and environmental variables (mean temperature and precipitation). Mammals suffered the highest mortality by roadkill (45.72%). Tortuosity of the road section and precipitation were not related to the number of collisions, while the presence of fences was related to an increase in roadkill events, and mean temperature significantly increased the probability of collision of mammals, birds, and reptiles. There was a seasonal effect in the number of collisions, which spatial pattern depended on the class of vertebrates. All this leads us to conclude that, to reduce the impact caused by roadkill mortality on the wildlife we need specific measures to be taken in each critical place for each vertebrate group.
Due to rapid human expansion in the last century, wildlife roadkill is becoming a concerning threat to biodiversity and human safety. The frequency of roadkill events depends on factors related to specific traits of the road—tortuosity or the presence of fences, among others—and the animal ecology—such as activity patterns, reproductive season, or thermoregulation. These, in turn, are related to environmental factors, with seasonal variations. Here, we assessed roadkill mortality of terrestrial vertebrates over the year. To do this, we sampled 10 road sections (of 3 km, by walk) in the south of Spain for a full year, registering the carcasses of run-over vertebrates. Then, we analysed the spatiotemporal patterns of roadkill events for the four vertebrates’ classes and the effects of road traits (presence of fence, tortuosity, distance to water point) and environmental variables (mean temperature and precipitation). Mammals suffered the highest mortality by roadkill (45.72%). The frequency of collisions was independent of tortuosity, presence of fences, and precipitation, while mean temperature significantly increased the probability of collision of mammals, birds, and reptiles. There was a seasonal effect in the number of collisions, which spatial pattern depended on the class of vertebrates. All this leads us to conclude that, to reduce the impact caused by roadkill mortality on wildlife, we need specific measures to be taken timely in each critical place and for each vertebrate group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.