Scene recognition is currently one of the top-challenging research fields in computer vision. This may be due to the ambiguity between classes: images of several scene classes may share similar objects, which causes confusion among them. The problem is aggravated when images of a particular scene class are notably different. Convolutional Neural Networks (CNNs) have significantly boosted performance in scene recognition, albeit it is still far below from other recognition tasks (e.g., object or image recognition). In this paper, we describe a novel approach for scene recognition based on an end-to-end multi-modal CNN that combines image and context information by means of an attention module. Context information, in the shape of a semantic segmentation, is used to gate features extracted from the RGB image by leveraging on information encoded in the semantic representation: the set of scene objects and stuff, and their relative locations. This gating process reinforces the learning of indicative scene content and enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. Experimental results on four publicly available datasets show that the proposed approach outperforms every other state-of-the-art method while significantly reducing the number of network parameters. All the code and data used along this paper is available at: https://github.com/vpulab/Semantic-Aware-Scene-Recognition
Skin cancer is a major health problem. There are several techniques to help diagnose skin lesions from a captured image. Computer-aided diagnosis (CAD) systems operate on single images of skin lesions, extracting lesion features to further classify them and help the specialists. Accurate feature extraction, which further depends on precise lesion segmentation, is key for the performance of these systems. In this paper, we present a skin lesion segmentation algorithm based on a novel adaptation of superpixels techniques and achieving the best reported results for the ISIC 2017 challenge dataset. Additionally, CAD systems have paid little attention to a critical criterion in skin lesion diagnosis: the lesion's evolution. This requires operating on two or more images of the same lesion, captured at different times but with a comparable scale, orientation and point of view; in other words, an image registration process should first be performed. We also propose in this work an image registration approach that outperforms top image registration techniques. Combined with the proposed lesion segmentation algorithm, this allows for the accurate extraction of features to assess the evolution of the lesion. We present a case-study with the lesion-size feature, paving the road for the development of automatic systems to easily evaluate skin lesion evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.