This paper discusses the econometric methodology of general-to-specific modeling, in which the modeler simplifies an initially general model that adequately characterizes the empirical evidence within his or her theoretical framework. Central aspects of this approach include the theory of reduction, dynamic specification, model selection procedures, model selection criteria, model comparison, encompassing, computer automation, and empirical implementation. This paper thus reviews the theory of reduction, summarizes the approach of general-to-specific modeling, and discusses the econometrics of model selection, noting that general-to-specific modeling is the practical embodiment of reduction. This paper then summarizes fifty-seven articles key to the development of general-to-specific modeling.
We establish the consistency of the selection procedures embodied in PcGets, and compare their performance with other model selection criteria in linear regressions. The significance levels embedded in the PcGets Liberal and Conservative algorithms coincide in very large samples with those implicit in the Hannan–Quinn (HQ) and Schwarz information criteria (SIC), respectively. Thus, both PcGets rules are consistent under the same conditions as HQ and SIC. However, PcGets has a rather different finite‐sample behaviour. Pre‐selecting to remove many of the candidate variables is confirmed as enhancing the performance of SIC.
There is a continous growing interest on the design of bimetallic cooperative complexes that emerges from their potential for bond activation and catalysis, a potential that has been widely exploited...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.