We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal c-TuRC-interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis-Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin-A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cisside of the Golgi in an MT-independent, GM130-dependent manner. Short AKAP450-dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi-associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome-Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome-associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.
AKAP450 is a critical determinant of Golgi ribbon integrity, positioning, and function.
BackgroundThe Golgi apparatus in mammals appears as a ribbon made up of interconnected stacks of flattened cisternae that is positioned close to the centrosome in a microtubule-dependent manner. How this organisation is achieved and retained is not well understood. GMAP210 is a long coiled-coil cis-Golgi associated protein that plays a role in maintaining Golgi ribbon integrity and position and contributes to the formation of the primary cilium. An amphipathic alpha-helix able to bind liposomes in vitro has been recently identified at the first 38 amino acids of the protein (amphipathic lipid-packing sensor motif), and an ARF1-binding domain (Grip-related Arf-binding domain) was found at the C-terminus. To which type of membranes these two GMAP210 regions bind in vivo and how this contributes to GMAP210 localisation and function remains to be investigated.ResultsBy using truncated as well as chimeric mutants and videomicroscopy we found that both the N-terminus and the C-terminus of GMAP210 are targeted to the cis-Golgi in vivo. The ALPS motif was identified as the N-terminal binding motif and appeared concentrated in the periphery of Golgi elements and between Golgi stacks. On the contrary, the C-terminal domain appeared uniformly distributed in the cis-cisternae of the Golgi apparatus. Strikingly, the two ends of the protein also behave differently in response to the drug Brefeldin A. The N-terminal domain redistributed to the endoplasmic reticulum (ER) exit sites, as does the full-length protein, whereas the C-terminal domain rapidly dissociated from the Golgi apparatus to the cytosol. Mutants comprising the full-length protein but lacking one of the terminal motifs also associated with the cis-Golgi with distribution patterns similar to those of the corresponding terminal end whereas a mutant consisting in fused N- and C-terminal ends exhibits identical localisation as the endogenous protein.ConclusionWe conclude that the Golgi localisation of GMAP210 is the result of the combined action of the two N- and C-terminal domains that recognise different sub-regions of the cis-GA. Based on present and previous data, we propose a model in which GMAP210 would participate in homotypic fusion of cis-cisternae by anchoring the surface of cisternae via its C-terminus and projecting its distal N-terminus to bind the rims or to stabilise tubular structures connecting neighbouring cis-cisternae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.