Using the Lagrangian-Grassmannian, a smooth algebraic variety of dimension n(n + 1)/2 that parametrizes isotropic subspaces of dimension n in a symplectic vector space of dimension 2n, we construct a new class of linear codes generated by this variety, the Lagrangian-Grassmannian codes. We explicitly compute their word length, give a formula for their dimension and an upper bound for the minimum distance in terms of the dimension of the Lagrangian-Grassmannian variety.
The aim of this paper is twofold. First, we show a connection between the Lagrangian- Grassmannian variety geometry defined over a finite field with q elements and the q-ary Low-Density Parity- Check codes. Second, considering the Lagrangian-Grassmannian variety as a linear section of the Grassmannian variety, we prove that there is a unique linear homogeneous polynomials family, up to linear combination, such that annuls the set of its rational points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.