In this work, a synchronous model for grid-connected and islanded microgrids is presented. The grid-connected model is based on the premise that the reference frame is synchronized with the AC bus. The quadrature component of the AC bus voltage can be cancelled, which allows to express output power as a linear equation for nominal values in the AC bus amplitude voltage. The model for the islanded microgrid is developed by integrating all the inverter dynamics using a state-space model for the load currents. This model is presented in a comprehensive way such that it could be scalable to any number of inverter-based generators using inductor–capacitor–inductor (LCL) output filters. The use of these models allows designers to assess microgrid stability and robustness using modern control methods such as eigenvalue analysis and singular value diagrams. Both models were tested and validated in an experimental setup to demonstrate their accuracy in describing microgrid dynamics. In addition, three scenarios are presented: non-controlled model, Linear-Quadratic Integrator (LQI) power control, and Power-Voltage (PQ/Vdq) droop–boost controller. Experimental results demonstrate the effectiveness of the control strategies and the accuracy of the models to describe microgrid dynamics.
In the control of DC/AC switched power converters (SPC), one of the most important aspects to be considered is the selection of the real-time control platform. The real-time control platform must be able to meet the high performance efficiency and regulation requirements of the DC/AC SPC, as these typically operate at switching frequencies in the order of kHz to MHz. For this reason, the hardware characteristics of the ADC and PWM, and the processing capacity of the real-time control platform are of vital importance when implementing advanced digital controllers that maintain voltage and current levels within regulatory standards. In this context, we aimed to perform a comparative study of the computation times of different real-time control platforms when implementing different control strategies for DC/AC switched power converters. We also analyzed the impact of the real-time control platforms on the THD of the voltages generated by the DC/AC switched power converters. With the help of this paper, researchers and developers will have criteria to select which real-time control platform to use in real-time control for DC/AC SPC applications.
In response to national and international carbon reduction goals, renewable energy resources like photovoltaics (PV) and wind, and energy storage technologies like fuel-cells are being extensively integrated in electric grids. All these energy resources require power electronic converters (PECs) to interconnect to the electric grid. These PECs have different response characteristics to dynamic stability issues compared to conventional synchronous generators. As a result, the demand for validated models to study and control these stability issues of PECs has increased drastically. This paper provides a review of the existing PEC model types and their applicable uses. The paper provides a description of the suitable model types based on the relevant dynamic stability issues. Challenges and benefits of using the appropriate PEC model type for studying each type of stability issue are also presented.
This work proposes a power control strategy based on the linear quadratic regulator with optimal reference tracking (LQR-ORT) for a three-phase inverter-based generator (IBG) using an LCL filter. The use of an LQR-ORT controller increases robustness margins and reduces the quadratic value of the power error and control inputs during transient response. A model in a synchronous reference frame that integrates power sharing and voltage–current (V–I) dynamics is also proposed. This model allows for analyzing closed-loop eigenvalue location and robustness margins. The proposed controller was compared against a classical droop approach using proportional-resonant controllers for the inner loops. Mathematical analysis and hardware-in-the-loop (HIL) experiments under variations in the LCL filter components demonstrate fulfillment of robustness and performance bounds of the LQR-ORT controller. Experimental results demonstrate accuracy of the proposed model and the effectiveness of the LQR-ORT controller in improving transient response, robustness, and power decoupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.