This paper presents a heterogeneous computing framework to interface single board computers (SBC) to (i) distinct type of computing nodes, (ii) distinct operating systems, and (iii) distinct software applications for aeronautical surveillance system for drone delivery. The implementation platform selected is the Beagle Bone Black (BBB) having the operating system (OS) Linux Ubuntu 14. The computing nodes the BBB interfaces to are: (i) a personal laptop (MacBook Pro), (ii) a virtual machine, and (iii) two servers with distinct OSs. The software applications the BBB interfaces to are: (i) Gqrx, (ii) GNURadio, (iii) Google Earth, (iv) systems took kit (STK), and (v) Matlab. This heterogeneous computing framework, with the potential for incorporating specialized processing and networking capabilities, allows scalability for system integration to existing surveillance system for manned aircrafts. The proposed system successfully decodes the location of aircraft in real-time.
A comparison between the probability similarities of a Distributed Denial-of-Service (DDoS) dataset and Lévy walks is presented. This effort validates Lévy walks as a model resembling DDoS probability features. In addition, a method, based on the Smirnov transform, for generating synthetic data with the statistical properties of Lévy-walks is demonstrated. The Smirnov transform is used to address a cybersecurity problem associated with the Internet-of-things (IoT). The synthetic Lévy-walk is merged with sections of distinct signals (uniform noise, Gaussian noise, and an ordinary sinusoid). Zero-crossing rate (ZCR) within a varying-size window is utilized to analyze both the composite signal and the DDoS dataset. ZCR identifies all the distinct sections in the composite signal and successfully detects the occurrence of the cyberattack. The ZCR value increases as the signal under analysis becomes more complex and produces steadier values as the varying window size increases. The ZCR computation directly in the time-domain is its most notorious advantage for real-time implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.