Abstract-Angiotensin (Ang) II, the main peptide of the renin angiotensin system (RAS), is a renal growth factor, inducing hyperplasia/hypertrophy depending on the cell type. This vasoactive peptide activates mesangial and tubular cells and interstitial fibroblasts, increasing the expression and synthesis of extracellular matrix proteins. Some of these effects seem to be mediated by the release of other growth factors, such as TGF-. In experimental models of kidney damage, renal RAS activation, cell proliferation, and upregulation of growth factors and matrix production were described. In some of these models, blockade of Ang II actions by ACE inhibitors and angiotensin type 1 (AT 1 ) antagonists prevents proteinuria, gene expression upregulation, and fibrosis, as well as inflammatory cell infiltration. Interestingly, Ang II could also be involved in the fibrotic process because of its behavior as a proinflammatory cytokine, participating in various steps of the inflammatory response: Ang II (1) activates mononuclear cells and (2)
Transforming growth factor-beta (TGF-beta) participates in the pathogenesis of multiple cardiovascular diseases, including hypertension, restenosis, atherosclerosis, cardiac hypertrophy and heart failure. TGF-beta exerts pleiotropic effects on cardiovascular cells, regulating cell growth, fibrosis and inflammation. TGF-beta has long been believed to be the most important extracellular matrix regulator. We review the complex mechanisms involved in TGF-beta-mediated vascular fibrosis that includes the Smad signaling pathway, activation of protein kinases and crosstalk between these pathways. TGF-beta blockade diminishes fibrosis in experimental models, however better antifibrotic targets are needed for an effective therapy in human fibrotic diseases. A good candidate is connective tissue growth factor (CTGF), a downstream mediator of TGF-beta-induced fibrosis. Among the different factors involved in vascular fibrosis, Angiotensin II (AngII) has special interest. AngII can activate the Smad pathway independent of TGF-beta and shares with TGF-beta many intracellular signals implicated in fibrosis. Blockers of AngII have demonstrated beneficial effects on many cardiovascular diseases and are now one of the best options to block TGF-beta fibrotic responses. A better knowledge of the intracellular signals of TGF-beta can provide novel therapeutic approaches for fibrotic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.