Obesity-related comorbidities are, in large part, originated from the dysfunction of adipose tissue. Most of them revert after the normalization of body mass. Adipose tissue is essentially occupied by adipocytes. However, different populations of immunological cells and adipocyte precursor cells (AdPCs) are the main cellular components of tissue. During obesity, body fat depots acquire a low-level chronic inflammation and adipocytes increase in number and volume. Conversely, weight loss improves the inflammatory phenotype of adipose tissue immune cells and reduces the volume of adipocytes. Nevertheless, very little is known about the evolution of the human AdPCs reservoir. We have developed a flow cytometry-based methodology to simultaneously quantify the main cell populations of adipose tissue. Starting from this technical approach, we have studied human adipose tissue samples (visceral and subcutaneous) obtained at two different physiological situations: at morbid obesity and after bariatric surgery-induced weight loss. We report a considerable increase of the AdPCs reservoir after losing weight and several changes in the immune cells populations of adipose tissue (mast cells increase, neutrophils decrease and macrophages switch phenotype). No changes were observed for T-lymphocytes, which are discussed in the context of recent findings.
Type 2 diabetes (T2D) is a rising global health problem mainly caused by obesity and a sedentary lifestyle. In healthy individuals, white adipose tissue (WAT) has a relevant homeostatic role in glucose metabolism, energy storage, and endocrine signaling. Mast cells contribute to these functions promoting WAT angiogenesis and adipogenesis. In patients with T2D, inflammation dramatically impacts WAT functioning, which results in the recruitment of several leukocytes, including monocytes, that enhance this inflammation. Accordingly, the macrophages population rises as the WAT inflammation increases during the T2D status worsening. Since mast cell progenitors cannot arrive at WAT, the amount of WAT mast cells depends on how the new microenvironment affects progenitor and differentiated mast cells. Here, we employed a flow cytometry-based approach to analyze the number of mast cells from omental white adipose tissue (o-WAT) and subcutaneous white adipose tissue (s-WAT) in a cohort of 100 patients with obesity. Additionally, we measured the number of mast cell progenitors in a subcohort of 15 patients. The cohort was divided in three groups: non-T2D, pre-T2D, and T2D. Importantly, patients with T2D have a mild condition (HbA1c <7%). The number of mast cells and mast cell progenitors was lower in patients with T2D in both o-WAT and s-WAT in comparison to subjects from the pre-T2D and non-T2D groups. In the case of mast cells in o-WAT, there were statistically significant differences between non-T2D and T2D groups (p = 0.0031), together with pre-T2D and T2D groups (p=0.0097). However, in s-WAT, the differences are only between non-T2D and T2D groups (p=0.047). These differences have been obtained with patients with a mild T2D condition. Therefore, little changes in T2D status have a huge impact on the number of mast cells in WAT, especially in o-WAT. Due to the importance of mast cells in WAT physiology, their decrease can reduce the capacity of WAT, especially o-WAT, to store lipids and cause hypoxic cell deaths that will trigger inflammation.
The paradigm of mast cells in type 2 diabetes is changing. Although they were first considered deleterious inflammatory cells, now they seem to be important players driving adipose tissue homeostasis. Here we have employed a flow cytometry-based approach for measuring the surface expression of 4 proteins (CD45, CD117, CD203c, and FcϵRI) on mast cells of omental (o-WAT) and subcutaneous white adipose tissue (s-WAT) in a cohort of 96 patients with morbid obesity. The cohort was split into three groups: non-T2D, pre-T2D, and T2D. Noteworthy, patients with T2D have a mild condition (HbA1c <7%). In o-WAT, mast cells of patients with T2D have a decrease in the surface expression of CD45 (p=0.0013), CD117 (p=0.0066), CD203c (p=0.0025), and FcϵRI (p=0.043). Besides, in s-WAT, the decrease was seen only in CD117 (p=0.046). These results indicate that T2D affects more to mast cells in o-WAT than in s-WAT. The decrease in these four proteins has serious effects on mast cell function. CD117 is critical for mast cell survival, while CD45 and FcϵRI are important for mast cell activation. Additionally, CD203c is only present on the cell surface after granule release. Taking together these observations, we suggest that mast cells in o-WAT of patients with T2D have a decreased survival, activation capacity, and secretory function.
Introduction: We aimed to assess the mid-term type 2 diabetes mellitus recovery patterns in morbidly obese patients by comparing some relevant physiological parameters of patients of bariatric surgery between two types of surgical procedures: mixed (roux-en-Y gastric bypass and biliopancreatic diversion) and restrictive (sleeve gastrectomy). Material and methods: This is a prospective and observational study of co-morbid, type 2 diabetes mellitus evolution in 49 morbidly obese patients: 37 underwent mixed surgery procedures and 12 a restrictive surgery procedure. We recorded weight, height, body mass index, and glycaemic, lipid, and nutritional blood parameters, prior to procedure, as well as six and twelve months post-operatively. In addition, we tested for differences in patient recovery and investigated predictive factors in diabetes remission. Results: Both glycaemic and lipid profiles diminished significantly to healthy levels by 6 and 12 months post intervention. Type 2 diabetes mellitus showed remission in more than 80% of patients of both types of surgical procedures, with no difference between them. Baseline body mass index, glycated haemoglobin, and insulin intake, among others, were shown to be valuable predictors of diabetes remission one year after the intervention. Conclusions:The choice of the type of surgical procedure did not significantly affect the remission rate of type 2 diabetes mellitus in morbidly obese patients. (Endokrynol Pol 2017; 68 (1): 18-25)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.