Previously we found that terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. In this report, focusing our attention on the apoptotic mechanisms activated by terfenadine, we show that this drug can potentially activate distinct intrinsic signaling pathways depending on culture conditions. Serum-deprived conditions enhance the cytotoxic effect of terfenadine and caspase-4 and -2 are activated upstream of caspase-9. Moreover, although we found an increase in ROS levels, the apoptosis was ROS independent. Conversely, terfenadine treatment in complete medium induced ROS-dependent apoptosis. Caspase-4, -2, and -9 were simultaneously activated and p73 and Noxa induction were involved. ROS inhibition prevented p73 and Noxa expression but not p53 and p21 expression, suggesting a role for Noxa in p53-independent apoptosis in melanoma cells. Finally, we found that terfenadine induced autophagy, that can promote apoptosis. These findings demonstrate the great potential of terfenadine to kill melanoma cells through different cellular signaling pathways and could contribute to define new therapeutic strategies in melanoma.
Serum soluble interleukin-2 receptor (sIL-2R), intercellular adhesion molecule-1 (sICAM-1) and interleukin-10 (IL-10) have each been reported as useful markers for melanoma progression. To evaluate the clinical relevance of these three markers, we simultaneously analysed their serum levels in patients with melanoma. A longitudinal study with a 3-year follow-up was performed and different stages of the disease were considered. Mean values of sIL-2R were significantly higher than in normal controls in all stages and correlated with the disease progression. The prognosis of patients with levels > 529 U/ml of sIL-2R was significantly poorer than in patients with sIL-2R levels < 529 U/ml. Levels of sICAM-1 were also elevated in melanoma patients, specially at the time of the metastatic disease. Serum IL-10 levels were more frequently detectable in the patients that developed metastasis during follow-up, and the prognosis of patients with detectable IL-10 levels was significantly poorer than in those patients with IL-10 undetected levels. Statistical analysis based on Logistic and Cox regression models showed that only sex, stage and sIL-2R value are factors significantly associated with metastatic progression. Moreover, high levels of sIL-2R could be a risk factor for malignant progression in melanoma. © 2000 Cancer Research Campaign
Previously, we found that the H1 histamine receptor antagonist diphenhydramine induces apoptosis in human acute T-lymphocytic leukemia cells. Since histamine has been shown to act as a growth factor in malignant melanoma cells, we decided to evaluate the in vitro effect of diphenhydramine and other H1 histamine receptor antagonists, such as terfenadine, astemizol and triprolidine on four malignant human melanoma cell lines. These antagonists were found to induce apoptotic cell death in all four melanoma cell lines. Apoptosis was determined by assessment of phosphatidylserine exposure on the surface of the cells and nuclear fragmentation. Importantly, H1 antagonist treatments did not adversely affect the viability of human melanocytes and murine fibroblasts at the same doses and duration of exposure. Treatment of melanoma cells with terfenadine induced DNA damage and caspases 2, 3, 6, 8 and 9 activation. Furthermore, the general caspase inhibitor (z-VAD-FMK) and a selective inhibitor of caspase-2 (z-VDVAD-FMK) protected melanoma cells from terfenadine-induced apoptosis. In contrast, the caspase-8 inhibitor (z-IETD-FMK) was ineffective. In addition, we found that mitochondria are involved in TEF-induced apoptosis, characterized by the dissipation of the mitochondrial transmembrane potential, the release of cytochrome c into the cytosolic compartment and caspase-9 activation. On the basis of these results we conclude that H1 histamine receptor antagonists induce apoptosis in human melanoma cells but not in normal melanocytes and embryonic murine fibroblasts; this apoptosis appears to be caspase-2-dependent and involves the mitochondrial pathway. The present results may contribute to the elaboration of novel therapeutic strategies for the treatment of malignant human melanoma.
We have presented the largest series of solar urticaria published to date. The epidemiological, clinical, and photobiologic findings confirm previously reported data, although there was a particularly high rate of negative phototests in our series. Reactivity exclusively to visible or natural light was associated with a higher probability of resolution. No increasing trend was observed in the annual incidence.
BackgroundThe observed correlation between ultraviolet light incidence and skin color, together with the geographical apportionment of skin reflectance among human populations, suggests an adaptive value for the pigmentation of the human skin. We have used Affymetrix U133a v2.0 gene expression microarrays to investigate the expression profiles of a total of 9 melanocyte cell lines (5 from lightly pigmented donors and 4 from darkly pigmented donors) plus their respective unirradiated controls. In order to reveal signatures of selection in loci with a bearing on skin pigmentation in humans, we have resequenced between 4 to 5 kb of the proximal regulatory regions of three of the most differently expressed genes, in the expectation that variation at regulatory regions might account for intraespecific morphological diversity, as suggested elsewhere.ResultsContrary to our expectations, expression profiles did not cluster the cells into unirradiated versus irradiated melanocytes, or into lightly pigmented versus darkly pigmented melanocytes. Instead, expression profiles correlated with the presence of Bovine Pituitary Extract (known to contain α-MSH) in the media. This allowed us to differentiate between melanocytes that are synthesizing melanin and those that are not. TYR, TYRP1 and DCT were among the five most differently expressed genes between these two groups. Population genetic analyses of sequence haplotypes of the proximal regulatory flanking-regions included Tajima's D, HEW and DHEW neutrality tests analysis. These were complemented with EHH tests (among others) in which the significance was obtained by a novel approach using extensive simulations under the coalescent model with recombination. We observe strong evidence for positive selection for TYRP1 alleles in Africans and for DCT and TYRP1 in Asians. However, the overall picture reflects a complex pattern of selection, which might include overdominance for DCT in Europeans.ConclusionDiversity patterns clearly evidence adaptive selection in pigmentation genes in Africans and Asians. In Europeans, the evidence is more complex, and both directional and balancing selection may be involved in light skin. As a result, different non-African populations may have acquired light skin by alternative ways, and so light skin, and perhaps dark skin too, may be the result of convergent evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.