We show that [Er-Ce-Er] molecular trinuclear coordination compound is a promising platform to implement the three-qubit quantum error correction code protecting against pure dephasing, the most important error in magnetic...
A HYSCORE investigation of the heme center in the cytochrome b559 is presented. To assign the observed signals to specific nuclei, bis-imidazol coordinated heme compounds that model the iron environment in cytochrome b559 are also studied. In the model compounds selective isotopic substitution of nitrogen atoms has been performed. The HYSCORE spectra allow us to obtain the hyperfine and quadrupolar coupling tensors of heme and imidazol bonding nitrogen atoms. The results can be interpreted in terms of the structure and the electronic distribution of the active center. The hyperfine tensors indicate that the unpaired electron is confined in a nonbonding iron orbital with a negligible nitrogen p orbital contribution. Quadrupolar coupling tensors suggest that the orientation of the semioccupied orbital is driven by the orientation of the two parallel imidazol rings of the axial histidine side chains. The results are discussed in terms of the structure-function relationship of cytochromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.