A class of quasi-elliptic-type planar bandpass filters (BPFs) with electronically controllable bandwidth between narrow-band and ultra-wideband states and enhanced passband flatness is reported. It consists of the in-series cascade of replicas of an adaptive BPF stage that exhibits three in-band poles and two transmission zeros (TZs). In this manner, BPF transfer functions with 3K poles and multiple TZs-between two K-multiplicity and 2K one-multiplicity TZs-without cross-coupling can be synthesized with a K-stage BPF architecture. Bandwidth reconfiguration is performed through the spectrally agile allocation of these TZs. Passband flattening for all the states is accomplished through the adjustment of the BPF in-band return-loss profile by tuning the external admittance inverters and those between BPF stages. The aforementioned procedures for bandwidth control and passband flattening are theoretically demonstrated with the coupling-routing diagram formalism. Furthermore, a mechanism to avoid the appearance of out-of-band spurious peaks due to the multi-stage in-series-cascade process in the associated transmissionline-based BPF implementation is described. For experimental-validation purposes, a 1-GHz sixth-order varactor-tuned BPF microstrip prototype with measured flattened 1-dB referred passband-width states going from 46 to 482 MHz-measured bandwidth tuning ratio of 11.5:1-is developed and characterized. Measurements for various temperature conditions and their in situ compensation are also shown. INDEX TERMS Bandpass filter (BPF), bandwidth control, electronically-controllable filter, intermediatefrequency (IF) filter, microstrip filter, multi-functional filter, passband flattening, reconfigurable filter, satellite-communication receiver, transmission zero (TZ), tunable filter, varactor-tuned filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.