Botrytis cinerea is a phytopathogenic fungus infecting a number of crops (tomatoes, grapes and strawberries), which has been adopted as a model system in molecular phytopathology. B. cinerea uses a wide variety of infection strategies, which are mediated by a set of genes/proteins called pathogenicity/virulence factors. Many of these factors have been described as secreted proteins, and thus the study of this sub-proteome, the secretome, under changing circumstances can help us to understand the roles of these factors, possibly revealing new loci for the fight against the pathogen. A 2-DE, MALDI TOF/TOF-based approach has been developed to establish the proteins secreted to culture media supplemented with different carbon sources and plant-based elicitors (in this study: glucose, cellulose, starch, pectin and tomato cell walls). Secreted proteins were obtained from the culture media by deoxycholate-trichloroacetic acid/phenol extraction, and 76 spots were identified, yielding 95 positive hits that correspond to 56 unique proteins, including several known virulence factors (i.e. pectin methyl esterases, xylanases and proteases). The observed increases in secretion of proteins with established virulence-related functions indicate that this in vitro-induction/proteome-mining approach is a promising strategy for discovering new pathogenicity factors and dissecting infection mechanisms in a discrete fashion.
Real-time PCR (TaqMan®) assays were developed for the specific detection and discrimination of Colletotrichum spp., C. acutatum and C. gloeosporioides causing anthracnose in strawberry using the most divergent area of the internal transcribed spacers (ITS1 and ITS2) and 5·8S ribosomal RNA (rRNA) gene region. The specificity of the new assays was tested using DNA from six species of Colletotrichum and nine fungal species commonly found associated with strawberry material, and additionally by comparing the sequences with those from databases using a blast search. The sequences only showed identity with homologous sequences from the desired target organisms. The new assays were 10-100 times more sensitive than conventional PCR methods previously published for the diagnosis of strawberry anthracnose. When real-time PCR was compared with ELISA methods, PCR improved the sensitivity of the identification by obtaining positive results for samples of strawberry plant material that tested negative with ELISA. The development of C. acutatum was monitored using artificially infected strawberry crowns from two strawberry cultivars (Camarosa and Ventana) and a real-time PCR assay specific for this species between January and June 2006. The amount of C. acutatum detected using real-time PCR varied significantly by month ( P < 0·001), but not by cultivar ( P = 0·394). The new assays were shown to be useful tools for rapid detection and identification of these pathogens and to allow rapid and accurate assessment of the casual agents of anthracnose in strawberry.
Botrytis cinerea is a phytopathogenic fungi causing disease in a number of important crops. It is considered a very complex species in which different populations seem to be adapted to different hosts. In order to characterize fungal virulence factors, a proteomic research was started. A protocol for protein extraction from mycelium tissue, with protein separation by 2-DE and MS analysis, was optimised as a first approach to defining the B. cinerea proteome. Around 400 spots were detected in 2-DE CBB-stained gels, covering the 5.4-7.7 pH and 14-85 kDa ranges. The averages of analytical and biological coefficients of variance for 64 independent spots were 16.1% and 37.5%, respectively. Twenty-two protein spots were identified by MALDI-TOF or ESI IT MS/MS, with some of them corresponding to forms of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. Two more spots matched a cyclophilin and a protein with an unknown function.
The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species (Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae, and Pichia kluyveri) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action.
The acyl coenzyme A (CoA):6-aminopenicillanic acid (6-APA) acyltransferase of Penicillium chrysogenum AS-P-78 was purified to homogeneity, as concluded by sodium dodecyl sulfate-pQlyacrylamide gel electrophoresis and isoelectric focusing. The enzyme is a monomer with a molecular weight of 30,000 ± 1,000 and a pI of about 5.5. The optimal pH and temperature were 8.0 and 25°C, respectively. This enzyme converts 6-APA into penicillin by using phenylacetyl CoA or phenoxyacetyl CoA as acyl donors. The pure enzyme showed a high specificity and affinity for 6-APA and did not accept benzylpenicillin, 7-aminocephalosporanic acid, cephalosporin C, or isocephalosporin C as substrates. The enzyme converted isopenicillin N into penicillin G, although with a lower efficiency than when 6-APA was used as the substrate. It did not show penicillin G acylase activity. The acyl CoA:6-APA acyltransferase required dithiothreitol or other thiol-containing compounds, and it was protected by thiol-containing reagents against thermal inactivation. The acyltransferase was inhibited by several divalent and trivalent cations and by p-chloroipercuribenzoate and N-ethylmaleimide. The activity was absent in four different mutants that were blocked in penicillin biosynthesis.The 3-lactam-thiazolidine nucleus of penicillins is formed by cyclization of the tripeptide 8-(L-a-aminoadipyl)-Lcysteinyl-D-valine to form isopenicillin N (IPN), an intermediate in the biosynthetic pathway that has an L-aaminoadipyl side chain (Fig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.