A direct comparison between hydrodynamical simulations and observations is needed to improve the physics included in the former and to test biases in the latter. Post-processing radiative transfer and synthetic observations are now the standard way to do this. We report on the first application of the SKIRT radiative-transfer code to simulations of a star-forming cloud. The synthetic observations are then analyzed following traditional observational workflows. We find that in the early stages of the simulation, stellar radiation is inefficient in heating dust to the temperatures that are observed in Galactic clouds, thus the addition of an interstellar radiation field is necessary. The spectral energy distribution of the cloud settles rather quickly after ∼3 Myr of evolution from the onset of star formation, but its morphology continues to evolve for ∼8 Myr due to the expansion of H ii regions and the respective creation of cavities, filaments, and ridges. Modeling synthetic Herschel fluxes with one- or two-component modified blackbodies underestimates total dust masses by a factor of ∼2. However, spatially resolved fitting recovers up to about 70% of the intrinsic value. This “missing mass” is located in a very cold dust component with temperatures below 10 K, which does not contribute appreciably to the far-infrared flux. This effect could bias real observations if this dust exists in large amounts. Finally, we tested observational calibrations of the SFR based on infrared fluxes and concluded that they are in agreement when compared to the intrinsic SFR of the simulation averaged over ∼100 Myr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.