Conventional docking-based virtual screening (VS) of chemical databases is based on the ranking of compounds according to the values retrieved by a scoring function (typically, the binding affinity estimation). However, using the most suitable scoring function for each kind of receptor pocket is not always an effective process to rank compounds, and sometimes neither to distinguish between correct binding modes from incorrect ones. To improve actives from decoys selection, here we propose a three-step VS protocol, which includes the conventional docking step, a pharmacophore postfilter step, and a similarity search postprocess. This VS protocol is retrospectively applied to VEGFR-2 (Kdr-kinase) inhibitors. The resulting docking poses calculated using the Alpha HB scoring function implemented in MOE are postfiltered according to defined pharmacophore interactions (structure based). The selected poses are again ranked according to their molecular similarity (MACCS fingerprint) to the cognate ligand. Results show that both the overall and early VS performance improve the application of this protocol.
HIV infection is initiated by fusion of the virus with the target cell through binding of the viral gp120 protein with the CD4 cell surface receptor protein and the CXCR4 or CCR5 coreceptors. There is currently considerable interest in developing novel ligands that can modulate the conformations of these coreceptors and, hence, ultimately block virus−cell fusion. Herein, we present a highly specific and sensitive pharmacophore model for identifying CXCR4 antagonists that could potentially serve as HIV entry inhibitors. Its performance was compared with docking and shapematching virtual screening approaches using 3OE6 CXCR4 crystal structure and high-affinity ligands as query molecules, respectively. The performance of these methods was compared by virtually screening a library assembled by us, consisting of 228 high affinity known CXCR4 inhibitors from 20 different chemotype families and 4696 similar presumed inactive molecules. The area under the ROC plot (AUC), enrichment factors, and diversity of the resulting virtual hit lists was analyzed. Results show that our pharmacophore model achieves the highest VS performance among all the docking and shape-based scoring functions used. Its high selectivity and sensitivity makes our pharmacophore a very good filter for identifying CXCR4 antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.