This chapter is about a theoretical study applied to six carotenoids present in vegetables containing carotenes and xanthophylls. Electronic properties are analyzed such as energy in frontier orbitals and the first molecular orbitals to work in the UV-Vis absorption spectroscopy. Electronic structure methodologies were used within the frame of the density functional theory (DFT) using the theoretical methods B3LYP/6-31G(d)// B3LYP/6-31G+(d,p) for ground states and B3LYP/6-31G(d)//CAM-B3LYP/6-31G+(d,p) for excited states. Results for the main absorption peak are in agreement with experimental results with a difference between zeaxanthin and violaxanthin results of 0.1 eV, approximately. The UV-Vis absorption spectra obtained for carotenoids are in good agreement with the experimental results. The possible use in energy generation systems is discussed for these systems. Diade chlorophyllide a-zeaxanthin was formed, and calculation results predicted energy transfer for these photosynthetic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.