SMS language presents special phenomena and important deviations from natural language. Every day, an impressive amount of chat messages, SMS messages, and e-mails are sent all over the world. This widespread use makes important the development of systems that normalize SMS language into natural language. However, typical machine translation approaches are difficult to adapt to SMS language because of many irregularities that are shown by this kind of language. This paper presents a new approach for SMS normalization that combines lexical and phonological translation techniques with disambiguation algorithms at two different levels: lexical and semantic. The method proposed does not depend on big annotated corpus, which is difficult to build and is applied in two different domains showing its easiness of adaptation across different languages and domains. The results obtained by the system outperform some of the existing methods of SMS normalization despite the fact that the Spanish language and the corpus created have some features that complicate the normalization task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.