Presently, security is a hot research topic due to the impact in daily information infrastructure. Machine-learning solutions have been improving classical detection practices, but detection tasks employ irregular amounts of data since the number of instances that represent one or several malicious samples can significantly vary. In highly unbalanced data, classification models regularly have high precision with respect to the majority class, while minority classes are considered noise due to the lack of information that they provide. Well-known datasets used for malware-based analyses like botnet attacks and Intrusion Detection Systems (IDS) mainly comprise logs, records, or network-traffic captures that do not provide an ideal source of evidence as a result of obtaining raw data. As an example, the numbers of abnormal and constant connections generated by either botnets or intruders within a network are considerably smaller than those from benign applications. In most cases, inadequate dataset design may lead to the downgrade of a learning algorithm, resulting in overfitting and poor classification rates. To address these problems, we propose a resampling method, the Synthetic Minority Oversampling Technique (SMOTE) with a grid-search algorithm optimization procedure. This work demonstrates classification-result improvements for botnet and IDS datasets by merging synthetically generated balanced data and tuning different supervised-learning algorithms.
In recent years, online social media information has been the subject of study in several data science fields due to its impact on users as a communication and expression channel. Data gathered from online platforms such as Twitter has the potential to facilitate research over social phenomena based on sentiment analysis, which usually employs Natural Language Processing and Machine Learning techniques to interpret sentimental tendencies related to users’ opinions and make predictions about real events. Cyber-attacks are not isolated from opinion subjectivity on online social networks. Various security attacks are performed by hacker activists motivated by reactions from polemic social events. In this paper, a methodology for tracking social data that can trigger cyber-attacks is developed. Our main contribution lies in the monthly prediction of tweets with content related to security attacks and the incidents detected based on ℓ1 regularization.
Abstract:In recent years, online social media information has been subject of study in several data science fields due to its impact on users as a communication and expression channel. Data gathered from online platforms such as Twitter has the potential to facilitate research over social phenomena based on sentiment analysis, which usually employs Natural Language Processing and Machine Learning techniques to interpret sentimental tendencies related to users opinions and make predictions about real events. Cyber attacks are not isolated from opinion subjectivity on online social networks. Various security attacks are performed by hacker activists motivated by reactions from polemic social events. In this paper, a methodology for tracking social data that can trigger cyber attacks is developed. Our main contribution lies in the monthly prediction of tweets with content related to security attacks and the incidents detected based on 1 regularization.
Hand gesture recognition (HGR) takes a central role in human–computer interaction, covering a wide range of applications in the automotive sector, consumer electronics, home automation, and others. In recent years, accurate and efficient deep learning models have been proposed for real-time applications. However, the most accurate approaches tend to employ multiple modalities derived from RGB input frames, such as optical flow. This practice limits real-time performance due to intense extra computational cost. In this paper, we avoid the optical flow computation by proposing a real-time hand gesture recognition method based on RGB frames combined with hand segmentation masks. We employ a light-weight semantic segmentation method (FASSD-Net) to boost the accuracy of two efficient HGR methods: Temporal Segment Networks (TSN) and Temporal Shift Modules (TSM). We demonstrate the efficiency of the proposal on our IPN Hand dataset, which includes thirteen different gestures focused on interaction with touchless screens. The experimental results show that our approach significantly overcomes the accuracy of the original TSN and TSM algorithms by keeping real-time performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.