Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.
Staphylococci are a group of microorganisms that can be often found in processed food and they might pose a risk for human health. In this study we have determined the content of staphylococci in 7 different fresh goat-milk cheeses. These bacteria were present in all of them, ranging from 103 to 106 CFU/g based on growth on selective media. Thus, a set of 97 colonies was randomly picked for phenotypic and genotypic identification. They could be clustered by RAPD-PCR in 10 genotypes, which were assigned by 16S rDNA sequencing to four Staphylococcus species: Staphylococcus aureus, Staphylococcus chromogenes, S. simulans, and S. xylosus. Representative strains of these species (n = 25) were tested for antibiotic sensitivity, and 11 of them were resistant to at least one of the antibiotics tested, including erythromycin, amoxicillin-clavulanic acid and oxacillin. We also tested two bacteriocins produced by lactic acid bacteria (LAB), namely the circular bacteriocin AS-48 and the lantibiotic nisin. These peptides have different mechanism of action at the membrane level. Nevertheless, both were able to inhibit staphylococci growth at low concentrations ranging between 0.16–0.73 μM for AS-48 and 0.02–0.23 μM for nisin, including the strains that displayed antibiotic resistance. The combined effect of these bacteriocins were tested and the fractional inhibitory concentration index (FICI) was calculated. Remarkably, upon combination, they were active at the low micromolar range with a significant reduction of the minimal inhibitory concentration. Our data confirms synergistic effect, either total or partial, between AS-48 and nisin for the control of staphylococci and including antibiotic resistant strains. Collectively, these results indicate that the combined use of AS-48 and nisin could help controlling (pathogenic) staphylococci in food processing and preventing antibiotic-resistant strains reaching the consumer in the final products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.