The writing of accurate requirements is a critical factor in assuring the success of a project. Text patterns are knowledge artifacts that are used as templates to guide engineers in the requirements authoring process. However, generating a text pattern set for a particular domain is a time-consuming and costly activity that must be carried out by specialists. This research proposes a method of automatically generating text patterns from an initial corpus of high-quality requirements, using genetic algorithms and a separate-and-conquer strategy to create a complete set of patterns. Our results show this method can generate a valid pattern set suitable for requirements authoring, outperforming existing methods by 233%, with requirements ratio values of 2.87 matched per pattern found; as opposed to 1.23 using alternative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.