Although induction motors (IMs) are robust and reliable electrical machines, they can suffer different faults due to usual operating conditions such as abrupt changes in the mechanical load, voltage, and current power quality problems, as well as due to extended operating conditions. In the literature, different faults have been investigated; however, the broken rotor bar has become one of the most studied faults since the IM can operate with apparent normality but the consequences can be catastrophic if the fault is not detected in low-severity stages. In this work, a methodology based on convolutional neural networks (CNNs) for automatic detection of broken rotor bars by considering different severity levels is proposed. To exploit the capabilities of CNNs to carry out automatic image classification, the short-time Fourier transform-based time–frequency plane and the motor current signature analysis (MCSA) approach for current signals in the transient state are first used. In the experimentation, four IM conditions were considered: half-broken rotor bar, one broken rotor bar, two broken rotor bars, and a healthy rotor. The results demonstrate the effectiveness of the proposal, achieving 100% of accuracy in the diagnosis task for all the study cases.
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.
Open-chain manipulator robots play an important role in the industry, since they are utilized in applications requiring precise motion. Highperformance motion of a robot system mainly relies on adequate trajectory planning and the controller that coordinates the movement. The controller performance depends of both, the employed control law and the sensor feedback. Optical encoder feedback is the most used sensor for angular position estimation of each joint in the robot, since they feature accurate and low noise angular position measurements. However, it cannot detect mechanical imperfections and deformations common in open chain robots. Moreover, velocity and acceleration cannot be extracted from the encoder data without adding phase delays. Sensor fusion techniques are found to be a good solution for solving this problem. However, few works has been carried out in serial robots for kinematic estimation of angular position, velocity and acceleration, since the delays induced by the filtering techniques avoids its use as controller feedback. This work proposes a novel sensor-fusion-based feedback system capable of providing complete kinematic information from each joint in 4-degrees of freedom serial robot, with the contribution of a proposed methodology based on Kalman filtering for fusing the information from optical encoder, gyroscope and accelerometer appended to the robot. Calibration and experimentation are carried out for validating the proposal. The results are compared with another kinematic estimation technique finding that this proposal provides more information about the robot movement without adding state delays, which is important for being used as controller feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.