Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (b)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (a)-CoVs; four were b-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A b-CoV with 96.5 % amino acid identity to the b-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health. The GenBank/EMBL/DDBJ accession numbers for the sequences of CoVs determined in this study are KC117184-KC117213.
Abstract. To identify the relationship between landscape use and dengue virus (DENV) occurrence in bats, we investigated the presence of DENV from anthropogenically changed and unaltered landscapes in two Biosphere Reserves: Calakmul (Campeche) and Montes Azules (Chiapas) in southern Mexico. Spleen samples of 146 bats, belonging to 16 species, were tested for four DENV serotypes with standard reverse transcriptase polymerase chain reaction (RT-PCR) protocols. Six bats (4.1%) tested positive for DENV-2: four bats in Calakmul (two Glossophaga soricina, one Artibeus jamaicensis, and one A. lituratus) and two bats in Montes Azules (both A. lituratus). No effect of anthropogenic disturbance on the occurrence of DENV was detected; however, all three RT-PCR-positive bat species are considered abundant species in the Neotropics and well-adapted to disturbed habitats. To our knowledge, this study is the first study conducted in southeastern Mexico to identify DENV-2 in bats by a widely accepted RT-PCR protocol. The role that bats play on DENV's ecology remains undetermined.Dengue fever is an important public health concern in the tropics, 1-4 and ecological and epidemiological studies are needed to assess the role of bats and other mammals in a possible sylvatic maintenance cycle.5 Dengue viruses (DENVs) comprise four antigenically distinct but genetically related serotypes of the Flavivirus genus (Flaviviridae family). 1DENVs are positive-sense single-stranded RNA viruses that cause one of the most common infectious diseases in humans in tropical regions.2 Their transmission includes an urban endemic/epidemic cycle between Aedes aegypti mosquitoes and humans as the reservoir host and a sylvatic enzootic cycle between non-human primates and arboreal mosquitoes of the genus Aedes.3 The urban cycle is well-documented in the Neotropics, with four serotypes reported in urban areas, 1-4 whereas the sylvatic cycle has been shown in West Africa and peninsular Malaysia.5 Thus far, the sylvatic cycle has not been described in the Neotropics. However, in Bolivia, DENV seroconversions among the indigenous Ayoreo people were found in a remote area where Ae. aegypti, the primary vector, was absent. 6 This finding suggests a possible sylvatic cycle involving a different mosquito species or cross-reaction with antibodies to another flavivirus. In French Guiana, all four DENV serotypes have been identified by molecular methods in 92 wild mammals (bats, rodents, and marsupials) in all settings investigated: periurban, rural, and sparsely populated areas.7 This finding suggests that primarily urban DENV strains could infect wildlife in non-urban forested areas. 7 The role of wildlife in DENV transmission remains unknown.Bats are important reservoirs of many viruses, such as rabies viruses, Nipah viruses, and coronaviruses. [8][9][10][11][12] Flaviviridae are the second most frequently reported viral family in the order Chiroptera (13% frequency; second only to rhabdoviruses) 9 ; however, their role in the dynamics of DENVs remains poorly ...
Arboviruses are important zoonotic agents with complex transmission cycles and are not well understood because they may involve many vectors and hosts. We studied sympatric wild mammals and hematophagous mosquitoes having the potential to act as hosts and vectors in two areas of southern Mexico. Mosquitoes, bats, and rodents were captured in Calakmul (Campeche) and Montes Azules (Chiapas), between November 2010 and August 2011. Spleen samples from 146 bats and 14 rodents were tested for molecular evidence of Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV), and West Nile virus (WNV) using PCR protocols. Bat ( Artibeus lituratus , Carollia sowelli , Glossophaga soricina , and Sturnira parvidens) and rodent ( Sigmodon hispidus and Oryzomys alfaroi ) species were positive for VEEV. No individuals were positive for WNV, EEEV, or WEEV. A total of 1,298 mosquitoes were collected at the same sites, and five of the mosquito species collected were known VEEV vectors (Aedes fulvus, Mansonia indubitans, Psorophora ferox, Psorophora cilipes, and Psorophora confinnis). This survey simultaneously presents the first molecular evidence, to our knowledge, of VEEV in bats and rodents from southern Mexico and the identification of potential sympatric vectors. Studies investigating sympatric nonhuman hosts, vectors, and arboviruses must be expanded to determine arboviral dynamics in complex systems in which outbreaks of emerging and reemerging zoonoses are continuously occurring.
BackgroundRNA viruses commonly infect bats and rodents, including mosquito-borne flaviviruses (MBFV) that affect human and animal health. Serological evidence suggests past interactions between these two mammalian orders with dengue viruses (DENV), West Nile virus (WNV), and yellow fever virus (YFV). Although in Mexico there are reports of these viruses in both host groups, we know little about their endemic cycles or persistence in time and space.MethodsRodents and bats were captured at the Cuitzmala River Basin on the Pacific coast of Jalisco state, Mexico, where MBFV, such as DENV, have been reported in both humans and bats. Samples were taken during January, June, and October 2014, at locations adjacent to the river. Tissue samples were collected from both bats and rodents and serum samples from rodents only. Highly sensitive serological and molecular assays were used to search for current and past evidence of viral circulation.ResultsOne thousand nine hundred forty-eight individuals were captured belonging to 21 bat and 14 rodent species. Seven hundred sixty-nine liver and 764 spleen samples were analysed by means of a specific molecular protocol used to detect flaviviruses. Additionally, 708 serum samples from rodents were examined in order to demonstrate previous exposure to dengue virus serotype 2 (which circulates in the region). There were no positive results with any diagnostic test.DiscussionTo our knowledge, this is the first survey of rodents and only the second survey of bats from the Pacific Coast of Mexico in a search for MBFV. We obtained negative results from all samples. We validated our laboratory tests with negative and positive controls. Our findings are consistent with other empirical and experimental studies in which these mammalian hosts may not replicate mosquito-borne flaviviruses or present low prevalence.ConclusionsTrue-negative results are essential for the construction of distribution models and are necessary to identify potential areas at risk. Negative results should not be interpreted as the local absence of MBFV in the region. On the contrary, we need to establish a long-term surveillance programme to find MBFV presence in the mosquito trophic networks, identifying the potential role of rodents and bats in viral dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.