Chemosensory communication is essential to insect biology, playing indispensable roles during mate-finding, foraging, and oviposition behaviors. These traits are particularly important during speciation, where chemical perception may serve to establish species barriers. However, identifying genes associated with such complex behavioral traits remains a significant challenge. Through a combination of transcriptomic and genomic approaches, we characterize the genetic architecture of chemoperception and the role of chemosensing during speciation for a young species pair ofHeliconiusbutterflies,Heliconius melpomeneandHeliconius cydno. We provide a detailed description of chemosensory gene-expression profiles as they relate to sensory tissue (antennae, legs, and mouthparts), sex (male and female), and life stage (unmated and mated female butterflies). Our results untangle the potential role of chemical communication in establishing barriers during speciation and identify strong candidate genes for mate and host plant choice behaviors. Of the 252 chemosensory genes,HmOBP20(involved in volatile detection) andHmGr56(a putative synephrine-related receptor) emerge as strong candidates for divergence in pheromone detection and host plant discrimination, respectively. These two genes are not physically linked to wing-color pattern loci or other genomic regions associated with visual mate preference. Altogether, our results provide evidence for chemosensory divergence betweenH. melpomeneandH. cydno, two rarely hybridizing butterflies with distinct mate and host plant preferences, a finding that supports a polygenic architecture of species boundaries.
Variation at Major Histocompatibility Complex (MHC) genes is thought to be an important mechanism underlying mate choice in vertebrates, with individuals typically predicted to prefer MHC-dissimilar reproductive partners. However, analyses based on individual MHC loci have generated contradictory results regarding the role of these genes in mate-choice decisions. To provide a more comprehensive assessment of relationships between MHC variation and mating behavior, we used an exome capture strategy to characterize variability at 13 MHC loci, 312 innate immune system genes, and 1044 nonimmune genes in 25 obligate monogamous pairs of California mice () from 2 free-living populations of this species in Monterey County, California. Pairwise genotypic comparisons and analyses of SNP-based allelic differences failed to detect disassortative mating based on MHC variability; reproductive partners were not more dissimilar than randomly generated male-female pairs at MHC, innate or nonimmune loci. Within populations, individuals tended to be more closely related at MHC genes than at innate or nonimmune genes. Consistent with the functional role of immunogenes, the 2 study populations were highly differentiated at MHC and innate genes but not at nonimmune loci. Collectively, our results suggest that MHC genetic variation in California mice reflects local differences in pathogen exposure rather than disassortative mating based on variability at MHC Class I and II genes.
Behaviors that increase an individual's exposure to pathogens are expected to have important effects on immunoactivity. Because sexual reproduction typically requires close contact among conspecifics, mating systems provide an ideal opportunity to study the immunogenetic correlates of behaviors with high versus low risks of pathogen exposure. Despite logical links between polygynandrous mating behavior, increased pathogen exposure, and greater immunoactivity, these relationships have seldom been examined in nonhuman vertebrates. To explore interactions among these variables in a different lineage of mammals, we used RNAseq to study the gene expression profiles of liver tissue—a highly immunoactive organ—from sympatric populations of the monogamous California mouse (Peromyscus californicus) and two polygynandrous congeners (P. maniculatus and P. boylii). Differential expression and co‐expression analyses revealed distinct patterns of gene activity among species, with much of this variation associated with differences in mating system. This tendency was particularly pronounced for MHC genes, with multiple MHC Class I genes being upregulated in the two polygynandrous species, as expected if exposure to sexually transmitted pathogens varies with mating system. Our results underscore the role of mating behavior in influencing patterns of gene expression and highlight the use of emerging transcriptomic tools in behavioral studies of free‐living animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.