Macropinocytosis is a regulated form of endocytosis that mediates the non-selective uptake of solute molecules, nutrients and antigens. It is an actin-dependent process initiated from surface membrane ruffles that give rise to large endocytic vacuoles called macropinosomes. Macropinocytosis is important in a range of physiological processes; it is highly active in macrophages and dendritic cells where it is a major pathway for the capture of antigens, it is relevant to cell migration and tumour metastasis and it represents a portal of cell entry exploited by a range of pathogens. The molecular basis for the formation and maturation of macropinosomes has only recently begun to be defined. Here, we review the general characteristics of macropinocytosis, describe some of the regulators of this pathway, which have been identified to date and highlight strategies to explore the relevance of this endocytosis pathway in vivo.
Previously, we showed PAK-PIX-GIT targets and regulates focal adhesions; here, we uncover a different function for the complex at the centrosome. Active PAK1 is particularly evident in mitosis and phosphorylates the centrosomal adaptor GIT1 on serine 517. Interestingly, direct centrosome targeting activates the kinase via a process not requiring Rho GTPases; excision of the centrosome prevents this activation. Once activated, PAK1 dissociates from PIX/GIT but can bind to and phosphorylate the important centrosomal kinase Aurora-A. PAK1 promotes phosphorylation of Aurora-A on Thr288 and Ser342, which are key sites for kinase activation in mitosis. In vivo PAK activation causes an accumulation of activated Aurora-A; conversely, when betaPIX is depleted or PAK is inhibited, there is a delay in centrosome maturation. These observations may underlie reported effects of active PAK on cells, including histone H3 phosphorylation, alterations in centrosome number, and progression through mitosis.
Background: The mechanisms and components that regulate macropinocytosis are poorly understood. Here we have investigated the role of sorting nexin 5 (SNX5) in the regulation of macropinocytic activity.
Twinkle twinkle quantum dot: Conjugation of biomolecules to azide-modified quantum dots (QDs) through a bifunctional linker, using strain-promoted azide-alkyne cycloaddition with the QD and a squaramide linkage to the biomolecule (see scheme). Transferrin-conjugated QDs were internalized by transferrin-receptor expressing HeLa cells.
Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6–GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.