Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
The short life cycle and recalcitrant nature of petroleum-based plastics have been associated with plastic waste accumulation due to their composition rather than worldwide overproduction. The drive to replace single-use products has sparked a considerable amount of research work to discover sustainable options for petroleum-based plastics. Bioplastics open up a new horizon in plastics manufacturing operations and industrial sectors because of their low environmental impact, superior biodegradability, and contribution to sustainable goals. Their mechanical properties regarding tensile, flexural, hardness, and impact strength vary substantially. Various attempts have been made to augment their mechanical characteristics and capacities by incorporating reinforcement materials, such as inorganic and lignocellulosic fibres. This review summarizes the research on the properties of bioplastics modified by fibre reinforcement, with a focus on mechanical performance. The mechanical properties of reinforced bioplastics are significantly driven by parameters such as filler type, filler percentage, and aspect ratio. Fibre treatment aims to promote fibre–matrix adhesion by changing their physical, chemical, thermal, and mechanical properties. A general overview of how different filler treatments affect the mechanical properties of the composite is also presented. Lastly, the application of natural fibre-reinforced bioplastics in the automobile, construction, and packaging industries is discussed.
Natural fibre or lignocellulosic fibres have aroused the attention of scientists in the polymer industry, given their eco-friendly, low density, and biodegradability. Nevertheless, the major obstacle to wide commercial applications is the incompatibility between polar natural plant fibres with non-polar polymer matrix due to different chemical constitutions. Therefore, surface treatment of natural fibres before they are implemented to prepare fibre-reinforced composites is considered. Chemical and physical treatments are not preferred as it involves hazardous chemicals and high energy consumption. This review article provides an overview of various environmentally friendly approaches, such as introducing bacterial nanocellulose, pre-treatment with bacterial cellulase, fungal treatment, and enzymatic treatments aimed to treat natural fibres. The implications of working mechanisms on the characteristics of fibre itself and polymer composites with reinforcement are reviewed. The application of treated fibres reinforced composites and comparison of biological treatment with other treatments are discussed in this article. It is evidenced that fibre that undergoes biological modifications facilitates better fibre-matrix interfacial adhesion, has stronger mechanical bonding with the matrix, along with the reduction of water uptake of the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.