The Programmable Cell Death Protein 1/Programmable Death-Ligand 1 (PD-1/PD-L1) interaction is an immune checkpoint utilized by cancer cells to enhance immune suppression. There exists a huge need to develop small molecules drugs that are fast acting, cheap, and readily bioavailable compared to antibodies. Unfortunately, synthesizing and validating large libraries of small-molecule to inhibit PD-1/PD-L1 interaction in a blind manner is a both time-consuming and expensive. To improve this drug discovery pipeline, we have developed a machine learning methodology trained on patent data to identify, synthesize and validate PD-1/PD-L1 small molecule inhibitors. Our model incorporates two features: docking scores to represent the energy of binding (E) as a global feature and sub-graph features through a graph neural network (GNN) to represent local features. This Energy-Graph Neural Network (EGNN) model outperforms traditional machine learning methods as well as a simple GNN with an average F1 score of 0.997 (± 0.004) suggesting that the topology of the small molecule, the structural interaction in the binding pocket, and chemical diversity of the training data are all important considerations for enhancing model performance. A Bootstrapped EGNN model was used to select compounds for synthesis and experimental validation with predicted high and low potency to inhibit PD-1/PD-L1 interaction. The new potent inhibitor, (4-((3-(2,3-dihydrobenzo[<i>b</i>][1,4]dioxin-6-yl)-2-methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two known bioactive scaffolds, and has an IC<sub>50</sub> values of 339.9 nM that is comparatively better than the known bioactive compound. We conclude that our EGNN model can identify active molecules designed by scaffold hopping, a well-known medicinal chemistry technique and will be useful to identify new potent small molecule inhibitors for specific targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.